Weak Interactions Between Hydracids / Binary Acids: Some Considerations from a DFT Analysis

Authors

  • Luana RADU Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Str. Arany Janos Nr. 11, RO-400028 Cluj-Napoca, Romania
  • Alexandru LUPAN Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Str. Arany Janos Nr. 11, RO-400028 Cluj-Napoca, Romania https://orcid.org/0000-0002-9353-7629
  • Maria LEHENE Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Str. Arany Janos Nr. 11, RO-400028 Cluj-Napoca, Romania
  • Radu SILAGHI-DUMITRESCU Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Str. Arany Janos Nr. 11, RO-400028 Cluj-Napoca, Romania. *Correspondence to: radu.silaghi@ubbcluj.ro https://orcid.org/0000-0003-3038-7747

DOI:

https://doi.org/10.24193/subbchem.2024.2.09

Keywords:

hydracid, binary acid, noncovalent, DFT, supramolecular

Abstract

Non-covalent interactions involving element-hydrogen contacts are a central part in supramolecular chemistry and play essential roles in biomolecular structure. Reported here is a systematic computational analysis of such interactions within XHn---YHm dimers, where X and Y are C, Si, N, P, O, S, F and Cl, respectively. Two functionals are employed – the widely used BP86 and the M06-2X functional especially designed for describing noncovalent interactions. The interaction energies are found to be correlated with charge separation to a degree of 80%, suggesting that these noncovalent interactions can be reasonably explained/predicted by their electrostatic component. Energy decomposition analyses on the other hand suggest that correlation effects are the underlying root of the interaction. The rarely discussed intermolecular vibrations are also analyzed and noted to sometimes intercede in the typical observation windows for molecular spectroscopy. Moreover, in some cases notable effects of the non-covalent interactions are noted upon internal vibrations of the partners.

References

Zhao, Y.; Truhlar, D. G. A J. Chem. Phys. 2006, No. 125, 194101–194118.

Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–241.

Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799. https://doi.org/10.1002/jcc.

Radu, L. BSc Diploma Paper: Studiul Interacțiunilor Necovalente. Studii Experimentale Și Teoretice, Babes-Bolyai University, 2014.

Silaghi-Dumitrescu, L.; Attia, A. A. A.; Silaghi-Dumitrescu, R.; Blake, A. J.; Sowerby, D. B. Inorg. Chim. Acta 2018, 475, 120–126. https://doi.org/10.1016/j.ica.2017.08.052.

Silaghi-Dumitrescu, R.; Lupan, A. Cent. Eur. J. Chem. 2013, 11 (3), 457–463.

Irsai, I.; Majdik, C.; Lupan, A.; Silaghi-Dumitrescu, R. J. Math. Chem. 2012, 50 (4), 703–733.

Carrascoza, F.; Zaric, S.; Silaghi-Dumitrescu, R. J. Mol. Graph. Model. 2014, 50, 125–133.

Irsai, I.; Pesek, S. Z.; Silaghi-Dumitrescu, R. Studia UBB Chemia. 2022, 67 (4), 47–72.

Irsai, I.; Lupan, A.; Majdik, C.; Silaghi-Dumitrescu, R. Studia UBB Chemia. 2017, 62 (4), 495–513.

Silaghi-Dumitrescu, R. Studia UBB Chemia. 2010, 60(1), 31–36.

Lupan, A.; Kun, A.-Z. Z.; Carrascoza, F.; Silaghi-Dumitrescu, R. Performance J. Mol. Model. 2013, 19 (1), 193–203.

Carrascoza Mayen, J. F.; Lupan, A.; Cosar, C.; Kun, A.-Z.; Silaghi-Dumitrescu, R. Biophys. Chem. 2015, 197, 10–17.

Pesek, S.; Lehene, M.; Brânzanic, A. M. V.; Silaghi-Dumitrescu, R. Molecules 2022, 27 (24), 8974.

Hobza, P.; Řezáč, J. Chem. Rev. 2016, 116 (9), 4911–4912.

Sexton, T. M.; Howard, J. C.; Tschumper, G. S. J. Phys. Chem. A 2018, 122 (21), 4902–4908.

Leverentz, H. R.; Truhlar, D. G. J Phys Chem A 2008, 112 (26), 6009–6016.

Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109 (25), 5656–5667.

Silaghi-Dumitrescu, R.; Silaghi-Dumitrescu, I. J. Inorg. Biochem. 2006, 100 (1), 161–166.

Attia, A. A. A.; Silaghi-Dumitrescu, R. A J. Mol. Graph. Model. 2016, 69, 103–110.

Xie, Y. M.; Schaefer, H. F.; Silaghi-Dumitrescu, R.; Peng, B.; Li, Q. S.; Stearns, J. A.; Rizzo, T. R. Chem. Eur. J. 2012, 18 (41), 12941–12944.

Attia, A. A. A.; Lupan, A.; Silaghi-Dumitrescu, R. RSC Adv. 2013, 3 (48), 26194–26204.

Brânzanic, A. M. V.; Ryde, U.; Silaghi-Dumitrescu, R. I J. Inorg. Biochem. 2020, 203, 110928.

Silaghi-Dumitrescu, R. A Studia UBB Chemia, 2007, 52 (2), 127–139.

Silaghi-Dumitrescu, R.; Silaghi-Dumitrescu, I. Rev. Roum. Chim. 2004, 49, 257–268.

Surducan, M.; Makarov, S. V.; Silaghi-Dumitrescu, R. Eur. J. Inorg. Chem. 2014, 34 (34), 5827–5837..

Attia, A. A. A.; Cioloboc, D.; Lupan, A.; Silaghi-Dumitrescu, R. J. Inorg. Biochem. 2016, 165, 49–53.

Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105 (8), 2999–3093.

Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102 (97), 1995–2001.

Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C. W. J. Phys. Chem. A 1998, 102 (26), 5074–5085.

SPARTAN ‘18 for Windows, Wavefunction Inc., 18401 Von Karman Avenue, Suite 370 Irvine, CA 92612. 2018.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; MontgomeryJr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision E.01. Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2016. Gaussian, Inc.: Wallingford CT, 2016.

Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 (5), 580–592.

Mitoraj, M. P.; Michalak, A.; Ziegler, T. J. Chem. Theory Comput. 2009, 5 (4), 962–975.

Michalak, A.; Mitoraj, M.; Ziegler, T. J. Phys. Chem. A 2008, 112 (9), 1933–1939.

Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46 (1), 1–10..

Cao, X.; Liu, S.; Rong, C.; Lu, T.; Liu, S. Chem. Phys. Lett. 2017, 687, 131–137.

Downloads

Published

2024-06-30

How to Cite

RADU, L., LUPAN, A., LEHENE, M., & SILAGHI-DUMITRESCU, R. (2024). Weak Interactions Between Hydracids / Binary Acids: Some Considerations from a DFT Analysis. Studia Universitatis Babeș-Bolyai Chemia, 69(2), 121–134. https://doi.org/10.24193/subbchem.2024.2.09

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.