Assessment of the Auto-Oxidation Tendency and the Storage Effects on the Quality of Lignite in Oltenia Basin
DOI:
https://doi.org/10.24193/subbchem.2024.2.07Keywords:
coal oxidation, lignite auto-oxidation, coal oxygen absorbtion, coal quality degradation, Oltenia basinAbstract
Coal auto-oxidation is an undesirable chemical phenomenon that occurs due to the interaction of coal with atmospheric oxygen, a phenomenon that takes place during the coal life cycle, from the extraction moment until it is used. Thus, it is imperative to understand this process not only for the prevention of coal autoignition in the mining industry, but also for the optimization of the coal storage. The aim of this work was to assess the chemical behavior such as the oxidation, self-heating, and auto-ignition characteristics of coal in Oltenia Basin, Romania during its storage period. The hydrogen peroxide oxidation testing was used to determine the auto-oxidation tendency of lignite, while for the monitoring of coal quality during the storage process, coal samples were taken from a coal stack after 0, 5, 10, 20 and 30 days of storage and analyzed regarding the moisture (39,71%), ash content (35.21 – 37,11%), calorific value (1940 – 1875 kcal/kg), and volatile compounds (36.71 – 37,27%). A good correlation between the autoxidation and the content of volatile matter was observed. Compared to the initial values measured in initial coal samples (day 0), the carbon content and the superior calorific value decreased, while the ash content increased after a period of 30 days of storage. Thus, it can be concluded that knowing the self-ignition characteristic of lignites is important both for managing coal stocks and for evaluating the impact that coal storage can have on the environment.
References
Z. Yutao, Z. Yuanbo, L. Yaqing, S. Xueqiang, Z. Yujieș; Energy, 2021, 234, 121299
M. Yu, N. Yang, H. Li, . Wang, M. Wu, F. Wang, T. Chu, K. Wang; Energy, 2024, 289, 129974
H. Liu, Z. Li, Y. Yang, G. Miao, P. Li, G. Wang, Y. Zhang, Z. Hou; Energy, 2024, 291, 130336
F. Wang, B. Tan, X. Zan, J. Huang, X. Fang, S. Fu, H. Wang, T. Li, Q. Qi; Energy, 2024, 290, 130054
H. Liu, Z. Li, Y. Yang, G. Miao; J. Clean. Prod., 2023, 420, 138380
F. E. Huggins, G.R. Dunmyre, M.C. Lin, G.P. Huffman; Fuel, 1985, 64, 348-350
M. Onifade, B. Genc; Int. J. Coal. Sci. Technol., 2019, 6, 151–168
B.B. Beamish, A. Arisoy; Fuel, 2008, 87, 125–130
S. Aich, B.K. Nandi, S. Bhattacharya; Int. J. Coal. Sci. Technol., 2019, 6, 51–62.
Y. Zhang, J. Zhang, Y. Li, S. Gao, C. Yang, X. Shi; ACS Omega, 2021, 6, 7669-7679
D. Zhou, W. Lu, J. Li, Y. Song, C. Wu, Fuel, 2022, 308, 121802
I. Mohammed, A. Isah, D. Al Shehri, M. Mahmoud, M. Arif, M.S. Kamal, l.S. Alade, S. Patil; ACS Omega, 2022, 7, 28571-28587
R. Bouwman, I.L.C. Freriks; Fuel, 1980, 59, 315-322
S.W. Dack, M.D. Hobday, T.D. Smith, J.R. Pilbrow; Fuel, 1984, 63, 39-42
J.S. Gethner; Fuel, 1987, 66, 1091-1096
M.G. Rockley, J.P. Devlin; Applied Spectroscoy, 1980, 34, 407-408
J. Barraza, A. Portilla, J. Pineres; Fuel Process. Technol., 2011, 92, 776-779
J. Yu, Y. Jiang, A. Tahmasebi, Y. Han, X. Li, J. Lucas, T. Wall; Chem. Eng. Technol., 2014, 37, 1635-1644
W. Wang, L. Liang, Y. Peng, M.; Minerals, 2021, 11, 239
J. Deng, Y. Xiao, Q. Li, J. Lu, H. Wen; Fuel, 2015, 157, 261– 269
Hu, X.; Yang, S.; Zhou, X.; Yu, Z.; Hu, C. J. Nat. Gas Sci. Eng. 2015, 26, 461– 469
C. Avila, T. Wu, E. Lester; Energ. Fuel. 2014, 28, 1765– 1773
M. Onifade, B. Genc; Int. J. Min. Sci. Technol. 2018, 28, 933– 940
Y. Liang, F. Tian, H. Luo, H. Tang, Int. J. Min. Sci. Technol. 2015, 25, 749– 754
G.Gürdal, H. Hoşgörmez, D. Özcan, X. Li, H. Liu, W. Song; Int. J. Coal Geol., 2015, 138, 1– 15
K. Li, R. Khanna, J. Zhang, M. Barati, Z. Liu, T. Xu, V. Yang, V. Sahajwalla; Energ. Fuel., 2015, 29, 7178– 7189
X. Qi, L. Chen, H. Xin, Y. Ji, C. Bai, R. Song, H. Xue, F. Liu; Energ. Fuel., 2018, 32, 10469– 10477
W. H. Calkins; Fuel, 1994, 73, 475– 484
C. Ionescu, A. Matei, E. Traistă, - Lucrări practice - Chimie Generală – Universitatea Tehnică Petroşani, 1993 – In Romanian
I. Bacalu, Studiul dependenţei parametrilor calitativi ai lignitului de condiţiile de exploatare și depozitare a acestuia, PhD Thesis, Petroșani University, 2009, 188 – 198
Raport la studiul de evaluare a impactului asupra mediului pentru continuarea lucrărilor în perimetrul de licenţă extins al obiectivului de investitii "Deschiderea si punerea în exploatare a carierei Rosia de Jiu, judetul Gorj, la o capacitate de 8,0 milioane tone/an lignit”, ICSITPML S.A. Craiova, 2020, 274 – 282
G. R. Yohe, Oxidation of coal, Illinois State Geological Survey Report of Investigations 207Urbana, Illinois 1958, 33
SR ISO 1988:1996 Coals. Sampling
SR 5264:1995 Solid mineral fuels. Moisture determination
ISO 1171:2003 Solid mineral fuels – Determination of ash
ISO 1928:2020 Coal and coke. Determination of gross calorific value
STAS 5268-90 Combustibili solizi. Determinarea materiilor volatile, a cocsului şi a cărbunelui fix – in Romanian
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.