Effects of Audio Frequency Electric Fields on the Esterification Reactions of Acetic Acid With C4-C8 Branched Alcohols
DOI:
https://doi.org/10.24193/subbchem.2024.3.10Keywords:
audio frequency electric field, esterification reactions, natural esters, food and pharmaceutical industry, green methodAbstract
The esterification reactions, which lead to esters with a big diversity of uses across numerous industries, is one of the most important reactions in organic synthesis. Within these esterification reactions, a variety of strategies have been used to improve conversion, reaction rate, and equilibrium. This paper investigated the effects of the audio frequency electric fields on the esterification reactions of acetic acid with C4-C8 branched aliphatic alcohols. The aim of these studies was to synthesize a few acetic acid esters in an environmentally and friendly manner utilizing a new method. The only raw materials used were acetic acid, C4–C8 branched aliphatic alcohols and an audio frequency electric field acting as an accelerator. In order to determine the efficacy of the suggested approach, these esters were also synthesized without applying the audio frequency electric field. Analysis using gas chromatography technique revealed that the audio frequency electric field significantly increased esterification yields. The highest yields of ester were obtained for 2-octyl acetate, exhibiting a notable increase in comparison to the synthesis that did not employ the application of an audio frequency electric field as an enhancer of the reaction rate. The proposed new method, as well as the employing of raw materials of natural origin, allows the production of esters in an environmentally friendly manner and with reduced costs. These esters can be used without any restrictions in a variety of industries, including food, pharmaceuticals, and cosmetics.
References
D. Baines; N.C. Da Costa; M.L. Dewis; S. Eri; J. Grigor; S.J. Herman; S.B. Jameson; J. Knights; P. Kraft; J. Margetts; L. O’Hare; D.J. Rowe; L. Turin; C. Winkel; M. Zviely; Chemistry and Technology of Flavors and Fragrances, D.Rowe, Blackwell Publishing, Oxford, UK, 2004, pp. 56-82.
V.V. Rekha; M.V. Ramani; A. Ratnamala; V. Rupakalpana; G.V. Subbaraju;
C. Satyanarayana; C.S. Rao; Org Process Res & Dev, 2009, 13, 769–773.
T. Seki; T. Nakajo; M. Onaka; Chem. Lett., 2006, 35 (8), 824-829.
M. Salaheldeen; A.A. Mariod; M.K. Aroua; S.M.A. Rahman; M.E.M. Soudagar; I.M.R. Fattah; Catal., 2021, 11(9), 1121.
N.R. Khan; V.K. Rathod; Process Biochem, 2018, 75, 89-98.
H. Wang; J. Ni; Y. Zhang; Tetrahedron Lett., 2022, 104, 154021.
D.C. Cubides-Roman; V.H. Pérez; H.F. de Castro; C E. Orrego; O. H. Giraldo; E.G. Silveira; G.F. David; Fuel, 2017, 196, 481-487.
H. Ligong; D. Xuebao; JSCUT, 2011, 39(12),127-131.
Y. Feng; T. Yang; Y. Zhang; A. Zhang; L. Gai; D. Niu; Front Nutr., 2022, 9, 1048632.
M. Salaheldeen; A.A. Mariod; M.K. Aroua; S.M.A. Rahman; M.E.M. Soudagar; I.M.R. Fattah; Catal., 2021, 11(9), 1121.
Z.R. Lin; X.A. Zeng; S.J. Yu; D-W. Sun; Food Bioprocess Tech, 2011, 5, 2637–2645.
I-A. Udrea; V. Ordodi; C. Paul; C. Stănese; N. Vaszilcsin; Studia UBB Chemia, 2023, 1, 49–58.
P. Mahapatra; A. Kumari.; V. Kumar Garlapati; R. Banerjee; A. Nag; J Mol Catal, 2009, 60, 57–63.
R.G. Berger, Biotechnol Lett, 2009, 31, 1651–1659.
A.B. Martins; N.G. Graebin; A.S.G Lorenzoni; R. Fernandez-Lafuente; M.A.Z. Ayub; Process Biochem, 2011, 46, 2311–2316.
I. Calinescu; A. Vartolomei; I-A. Gavrila; M. Vinatoru; T.J. Mason; Ultrason. Sonochem, 2019, 54, 32–38.
N.T.C. Duong; A. Uthairatanakij; N. Laohakunjit; P. Jitareerat; N. Kaisangsri; Food Biosci, 2023, 52, 102410.
A.R. Deshmukh; V.K. Rathod, Green Process Synth, 2017, 6, 55–62.
R. Lanciotti; N. Belletti; F. Patrignani; A. Gianotti; F. Gardini; M.E. Guerzoni
J Agric Food Chem, 2003, 51, 2958–2963.
A.G.A. Sá; A.C.D. Meneses; P.H.H.D. Araújo; D.D. Oliveira; Trends Food Sci, 2017, 69, 95–105.
HEPTYL ACETATE NATURAL 1233, Advanced Biotech, 2015.
K. Fahlbusch; F. Hammerschmid; J. Panten; W. Pickenhagen; D. Schatkowski; K. Bauer; D. Garbe; H. Surburg; Flavors and Fragrances. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH, Ed.; Wiley, 2003 ISBN 978-3-527-30385-4.
W. Schmickler, E. Santos, Electrocatalysis, In Interfacial Electrochemistry, 2nd ed., Springer, Heidelberg, Germany, 2010, ISBN: 978-3-642-04929-8.
I-A. Udrea; A.T. Lukinich-Gruia; C. Paul; M-A. Pricop; M. Dan; V. Păunescu; A. Băloi; C.A. Tatu; N. Vaszilcsin; V. Ordodi, Processes, 2024, 12 (9), 1-17.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.