Study of Kazakhstan’s Shungite as Electrocatalyst Substrate in Hydrogen Evolution Reaction in Acidic Media
DOI:
https://doi.org/10.24193/subbchem.2024.3.02Keywords:
hydrogen, carbon material, shungite, electrocatalyst, hydrogen evolution reactionAbstract
The most efficient method to produce hydrogen is by electrolysis of water, and scientist’s current research is focused on developing inexpensive catalysts for this process. The article aims to study a carbon material (CM) obtained from shungite raw materials as electrocatalyst support in hydrogen evolution reaction (HER). The obtained activated CM has a multi-layered lamellar morphology with a specific surface area 356.40 m2/g. Electrocatalytical properties of the activated carbon material are the following: overpotential (η) at 10 mА/cm2 of 0.515 V vs. RHE with a Tafel slope of 172.5 mV/dec and good stability in acidic media. The obtained results show that activated CM from shungite raw material can be used as an electrocatalyst for obtaining hydrogen.
References
M. Sastri; Int. J. Hydrogen Energy, 1980, 5, 365 – 367. doi:10.1016/0360-3199(80)90017-8.
L. Tianze; D. Yuanyuan; Zh. Jianjiao; W. Lixue; D. Fangzheng; W. Dandan; Z. Hong; Int. J. Hydrogen Energy, 2024, 77, 359 – 372.
doi:10.1016/j.ijhydene.2024.06.185.
H.-E. Cheng; W.-L. Li; Z.-P. Yang; Int. J. Hydrogen Energy, 2019, 44, 30141 – 30150. doi:10.1016/j.ijhydene.2019.09.188.
M. Molla; M. Sarker; A. Kibria; Bangladesh J. Sci. Ind. Res., 2008, 43, 103 – 116. doi:10.3329/bjsir.v43i1.861.
Z. Wang; X. Ren; Y. Luo; L. Wang; G. Cui; F. Xie; X. Sun; Nanoscale, 2018, 10, 12302 – 12307. doi:10.1039/c8nr02071j.
J. Benson; M. Li; S. Wang; P. Wang; P. Papakonstantinou; ACS Appl. Mater. Interfaces, 2015, 7, 14113 – 14122. doi:10.1021/acsami.5b03399.
X. Qian; T. Hang; S. Shanmugam; M. Li; ACS Appl. Mater. Interfaces, 2015, 7, 15716 – 15725. doi:10.1021/acsami.5b00679.
V. Vij; S. Sultan; A. M. Harzandi; A. Meena; J. N. Tiwari; W.-G. Lee; K. S. Kim; ACS Catalysis, 2017, 7, 7196 – 7225. doi:10.1021/acscatal.7b01800.
C. Lo Vecchio; A. S. Arico; G. Monforte; V. Baglio; Renew. Energy, 2018, 120, 342 – 349. doi:10.1016/j.renene.2017.12.084.
J. Zhang; Z. Xia; L. Dai; Science Adv., 2015, 1, e1500564. doi:10.1126/sciadv.1500564.
R. Paul; Q. Dai; C. Hu; L. Dai; Carbon Energy, 2019, 1, 19 – 31. doi:10.1002/cey2.5.
S. A. Efremov; Production technology of carbon-mineral materials on the basis of shungite rocks: PhD thesis, 05.17.01, Almaty, 2010, p. 240.
B. E. Conway; B. V. Tilak; Electrochim Acta, 2002, 47, 3571 – 3594. doi: 10.1016/S0013-4686(02)00329-8.
T. Shinagawa; A. T. Garcia-Esparza; K. Takanabe; Scientific Rep, 2015, 5, 13801. doi: 10.1038/srep13801.
F. Bao; E. Kemppainen; I. Dorbandt; R. Bors; F. Xi; R. Schlatmann; R. van de Krol; S. Calnan; ChemElectroChem 2021, 8, 195 – 208. doi: 10.1002/celc.202001436.
H. Prats; K. Chan; Phys. Chem. Chem. Phys., 2021, 23, 27150 – 27158. doi: 10.1039/d1cp04134g.
R. S. A. Saravanan; N. Prabu; M. Sasidharan; G. Maduraiveeran; Appl. Surf. Sci., 2019, 489, 725 – 733. doi:10.1016/japsusc.2019.06.040.
Y. Zheng; Y. Jiao; L. H. Li; T. Xing; Y. Chen; M. Jaroniec; S. Z. Qiao; ACS Nano, 2014, 8, 5290 – 5296. doi: 10.1021/nn501434a.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.