Results on ϕ-like functions involving Hadamard product
DOI:
https://doi.org/10.24193/subbmath.2025.3.06Keywords:
Analytic function, differential subordination, parabolic ϕ−like function, ϕ−like functionAbstract
In this paper, we derive a differential subordination theorem involving convolution of normalized analytic functions. By selecting different dominants to our main result, we find certain sufficient conditions for ϕ−likeness and parabolic ϕ−likeness of functions in class A.
Mathematics Subject Classification (2010): 30C80; 30C45.
Received 25 February 2025; Accepted 31 May 2025
References
Adegani, E.A., Bulboaca, T. and Motamednezhad, A., Simple sufficient subordination conditions for close-to-convexity, Mathematics, 7(3)(2019), 241.
Adegani, E.A., Motamednezhad, A., Bulboaca, T. and Lecko A., On a logarithmic coefficients inequality for the class of close-to-convex functions, Proceedings of the Romanian Academy, Series A: Mathematics, 2023.
Brar, R. and Billing, S. S., Certain results on ф-like and starlike functions in a parabolic region, Int. J. Open Problems Complex Analysis, 9(2)(2017), 30-41.
Brickman, L., ф-like analytic functions, I, Bull. Amer. Math. Soc., 79(1973), 555-558.
Cho, N.E., Srivastava, H.M., Adegani, E.A. and Motamednezhad, A., Criteria for a certain class of the Carathéodory functions and their applications, J. Inq. and App., 85(2020).
Ma, W. C. and Minda, D., Uniformly convex functions, Ann. Polon. Math., 57(2)(1992), 165-175.
Miller, S. S. and Mocanu, P. T., Differential Subordinations: Theory and Applications, Marcel Dekker, New York and Basel (2000).
Ronning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), 189-196.
Ruscheweyh, St., A subordination theorem for ø-like functions, J. London Math. Soc., 2(13)(1976), 275-280.
Shanmugam, T. N., Sivasubramanian, S. and Darus, Maslina, Subordination and superordination results for ø-like functions, J. Inq. Pure and App. Math., 8(1)(2007).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution 4.0 International License.