Certain subclass of close-to-convex univalent functions defined with q-derivative operator
DOI:
https://doi.org/10.24193/subbmath.2025.3.05Keywords:
Analytic functions, univalent functions, close-to-convex functions, coefficient bounds, q-derivative, subordination, hypergeometric function, Hadamard productAbstract
The objective of this paper is to introduce a new subclass of strongly close-to-convex functions defined with q-derivative operator and by subordinating to generalized Janowski function. We establish several useful properties such as coefficient estimates, distortion theorem, argument theorem, inclusion relations and radius of convexity for this class. Some relevant connections of the results investigated here with those derived earlier are mentioned.
Mathematics Subject Classification (2010): 30C45, 30C50.
Received 10 December 2024; Accepted 01 April 2025.
References
Aouf, M. K., On a class of p-valent starlike functions of order α, Int. J. Math. Math. Sci., 10(1987), no. 4, 733-744.
Aouf, M. K., On subclasses of p-valent close-to-convex functions, Tamkang J. Math., 22(1991), no. 2, 133-143.
Das, R. N. and Singh, P., On subclasses of schlicht mapping, Indian J. Pure Appl. Math., 8(1977), no. 8, 864-872.
Darus, M., A new look at q-hypergeometric functions, TWMS J. Appl. Eng. Math., 4(2014), no. 1, 16-19.
Gao, C. Y. and Zhou, S. Q., On a class of analytic functions related to the starlike functions, Kyungpook Math. J., 45(2005), 123-130.
Jackson, F. H., On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(1908), 253-281.
Jackson, F. H., On q-definite integrals, Quarterly J. Pure Appl. Math., 41(1910), 193-203.
Janowski, W., Some extremal problems for certain families of analytic functions, Ann. Pol. Math., 28(1973), 297-326.
Kaplan, W., Close-to-convex schlicht functions, Michigan Math. J., 1(1952), 169-185.
Kowalczyk, J. and Les-Bomba, E., On a subclass of close-to-convex functions, Appl. Math. Letters, 23(2010), 1147-1151.
Mehrok, B. S., A subclass of close-to-convex functions, Bull. Inst. Math. Acad. Sin., 10(1982), no. 4, 389-398.
Murugusundaramoorthy, G. and Reddy, K. A., On a class of analytic functions related to close-to-convex functions, Int. J. Math. Comp. Sci., 16(2021), no. 1, 199-212.
Polatoglu, Y., Bolkal, M., Sen, A. and Yavuz, E., A study on the generalization of Janowski function in the unit disc, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 22(2006), 27-31.
Prajapat, J. K., A new subclass of close-to-convex functions, Surveys Math. Appl., 11(2006), 11-19.
Raina, R. K., Sharma, P. and Sokol, J., A class of strongly close-to-convex functions, Bol. Soc. Paran. Mat., 38(2020), no. 6, 9-24.
Rashid, A. M., Juma, A. R. S. and Yalcin, S., Subordination properties for classes of analytic univalent involving linear operator, Kyungpook Math J., 63(2023), 225-234.
Rogosinski, W., On the coefficients of subordinate functions, Proc. Lond. Math. Soc., 48(1943), no. 2, 48-82.
Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan, 11(1959), 72-75.
Sălăgean, G. S., Subclasses of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1(1983), 362-372.
Singh, G., Singh, G. and Singh, G., A new subclass of univalent functions, Ufa Math. J., 11(2019), no. 1, 133-140.
Soni, A. and Kant, S., A new subclass of close-to-convex functions with Fekete-Szegö problem, J. Rajasthan Acad. Phy. Sci., 12(2013), no. 2, 1-14.
Vijayalakshmi, S. P., Yalcin, S. and Sudharsan, T. V., Sharp estimates of Hermitian Toeplitz determinants for some subclasses of Sakaguchi type function related to sine function, Sahand Commun. Math. Anal., 22(2025), no. 1, 175-191.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution 4.0 International License.