Some saturation classes for deferred Riesz and deferred Nörlund means

Authors

  • Şeyda SEZGEK Department of Mathematics, Mersin University, Mersin, Turkey. Email: seydasezgek@mersin.edu.tr https://orcid.org/0000-0001-9035-3114
  • İlhan DAĞADUR Department of Mathematics, Mersin University, Mersin, Turkey. Email: ilhandagadur@yahoo.com https://orcid.org/0000-0001-6223-6543
  • Cumali ÇATAL Department of Mathematics, Mersin University, Mersin, Turkey. Email: catalcumali33@gmail.com

DOI:

https://doi.org/10.24193/subbmath.2025.2.08

Keywords:

Lipschitz class, Fourier series, deferred Riesz means, deferred Nörlund means

Abstract

One of main problem in approximation theory is determining a saturation class for a given method. The problem of determining a saturation class has been considered by Zamanski, Sunouchi, Watari and others. Mohaparta and Russel have considered some direct and inverse theorems in approximation of functions. Sunouchi and Watari have studied the Riesz means of type n. In [5], Goel et al. have extended these results by considering Nörlund means. In this paper, we examine some direct and inverse theorems in approximation of functions under weaker conditions by considering Deferred Riesz means and Deferred Nörlund means. Also, we extent above mentioned results.

Mathematics Subject Classification (2010): 41A40, 41A25, 40C05, 42A05, 40D25.

Received 28 March 2024; Accepted 24 May 2024.

References

1. Agnew, R.P., On Deferred Cesàro means, Ann. of Math., 33(1932), no. 2, 413-421.

2. Dağadur, İ., Çatal, C., On convergence of deferred Nörlund and deferred Riesz means of Mellin-Fourier series, Palest. J. Math., 8(2019), 127-136.

3. Favard, J., Sur l’approximation des fonctions d’une variable réelle, Colloques Internationaux du Centre National de la Recherche Scientifique, 15(1949), 97-110.

4. Favard, J., Sur la saturation des procédés de summation, J. Math. Pures Appl., 36(1957), 359-372.

5. Goel, D.S., Holland, A.S.B., Nasim, C., Sahney, B.N., Best approximation by a saturation class of polynomial operators, Pacific J. Math., 55(1974), 149-155.

6. Hardy, G.H., Littlewood, J.E., Some properties of fractional integral I, Math. Z., 27(1928), 565-600.

7. Hardy, G.H., Littlewood, J.E., Polya, G., Inequalities, Cambridge Univ. Press, Cambridge, New York, 1939.

8. Kuttner, B., Mohapatra R.N., Sahney, B.N., Saturation results for a class of linear operators, Math. Proc. Cambridge Philos. Soc., 94(1983), 133-148.

9. Kuttner, B., Sahney, B.N., On non-uniqueness of the order of saturation, Math. Proc. Cambridge Philos. Soc., 84(1978), 113-116.

10. Mohapatra, R.N., Russell, D.C., Some direct and inverse theorems in approximation of functions, J. Aust. Math. Soc., 34(1981), 143-154.

11. Saini, K., Raj, K., Applications of statistical convergence in complex uncertain sequences via deferred Riesz mean, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 29(2021), 337-351.

12. Srivastava, H.M., Jena, B.B., Paikray, S.K., Misra, U.K., Generalized equi-statistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 112(2018), 1487-1501.

13. Sunouchi, G., Watari, C., On determination of the class of saturation in the theory of approximation of functions, Proc. Japan Acad. Ser. A Math. Sci., 34(1958), 477-481.

14. Zamanski, M., Classes de saturation de certains procès d’approximation des séries de Fourier des fonctions continues, Ann. Sci. Éc. Norm. Supér., 66, 19-93.

15. Zymund, A., Trigonometric Series, Cambridge Univ. Press, Cambridge, New York, 1939.

Downloads

Published

2025-06-02

How to Cite

SEZGEK, Şeyda, DAĞADUR, İlhan, & ÇATAL, C. (2025). Some saturation classes for deferred Riesz and deferred Nörlund means. Studia Universitatis Babeș-Bolyai Mathematica, 79(2), 285–299. https://doi.org/10.24193/subbmath.2025.2.08

Issue

Section

Articles

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.