Optimal control of a frictional contact problem with unilateral constraints

Authors

  • Rachid GUETTAF Faculty of Mathematics, USTHB, Laboratory of Dynamical Systems, El Alia, Algiers, Algeria. Email: r_guettaf@yahoo.fr https://orcid.org/0000-0002-3420-1404
  • Arezki TOUZALINE Faculty of Mathematics, USTHB, Laboratory of Dynamical Systems, El Alia, Algiers, Algeria. Email: ttouzaline@yahoo.fr

DOI:

https://doi.org/10.24193/subbmath.2024.4.15

Keywords:

Nonlinear elasticity, friction, variational inequality, optimal control

Abstract

We consider a mathematical model that describes a static contact with a nonlinear elastic body and a foundation. The contact boundary is composed of two measurable parts. In one part, the contact is frictionless with Signorini’s conditions. In the other part, the normal stress is given and associated with Coulomb’s friction law. We state an optimal control problem that consists of leading the stress tensor as close as possible to a given target by acting with a control on the boundary. Then, we study the penalized and regularized control problem for which we establish a convergence result.

 Mathematics Subject Classification (2010): 49J40, 74B20, 74M10, 74M15.

References

1. Amassad, A., Chenais, D., Fabre, C., Optimal control of an elastic contact problem involving Tresca friction law, Nonlinear Anal., 48(2002), 1107-1135.

2. Barbu, V., Optimal Control of Variational Inequalities, Pitman Advanced Publishing, Boston, 1984.

3. Bartosz, K., Kalita, P., Optimal control for a class of dynamic viscoelastic contact problems with adhesion, Dynam. Systems Appl., 21(2012), 269-292.

4. Bonnans, J.F., Tiba, D., Pontryagin’s principle in the control of semilinear elliptic variational inequalities, Appl. Math. Optim., 23(1991) 299-312.

5. Capatina, A., Optimal control of a Signorini contact problem, Numer. Funct. Anal. and Optimiz., 21(2000), 817-828.

6. Capatina, A., Timofte, C., Boundary optimal control for quasistatic bilateral frictional contact problems, Nonlinear Anal., 94(2014), 84–99.

7. Denkowski, Z., Migorski, S., Ochal, A., Optimal control for a class of mechanical thermoviscoelastic frictional contact problems, Control Cybernet., 36(3)(2007), 611-632.

8. Denkowski, Z., Migorski, S., Ochal, A., A class of optimal control problems for piezoelectric frictional contact models, Nonlinear Anal. Real World Appl., 12(2011), 1883-1895.

9. Duvaut, G., Lions, J.-L., Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.

10. Friedman, A., Optimal control for variational inequalities, SIAM J. Control Optim., 24(1986), 439-451.

11. Han, W., Sofonea, M., Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, AMS/IP Studies in Advanced Mathematics, vol. 30, AMS, Rhode Island, 2002.

12. Kikuchi, N., Oden, J.T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.

13. Kimmerle, S.-J., Moritz, R., Optimal control of an elastic Tyre-Damper system with road contact, Proc. Appl. Math. Mech., 14(1)(2014), 875-876.

14. Laursen, T., Computational Contact and Impact Mechanics, Springer Berlin Heidelberg,2002.

15. Lions, J.-L., Contrôle Optimal des Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968.

16. Matei, A., Micu, S., Boundary optimal control for a frictional contact problem with normal compliance, Appl. Math. Optim., 78(2)(2018), 379–401.

17. Matei, A., Micu, S., Boundary optimal control for nonlinear antiplane problems, Non- linear Anal., 74(5)(2011), 1641-1652.

18. Mignot, R., Contrôle dans les inéquations variationnelles elliptiques, J. Func. Anal., 22(1976), 130-185.

19. Mignot, R., Puel, J.-P., Optimal control in some variational inequalities, SIAM J. Control Optim, 22(1984), 466-476.

20. Neittaanmaki, P., Sprekels, J., Tiba, D., Optimization of Elliptic Systems: Theory and Applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2006.

21. Oden, J.T., Martins, J.A.C., Models and computational methods for dynamic friction phenomena, Comput. Methods Appl. Mech. Engrg., 52(1985), 527–634.

22. Popov, V.L., Contact Mechanics and Friction, Springer, Heidelberg, 2010.

23. Shillor, M., Sofonea, M., Telega, J.J., Models and Variational Analysis of Quasistatic Contact, Lecture Notes in Physics, Vol. 655, Springer, Berlin Heidelberg, 2004.

24. Sofonea, M., Matei, A., Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems, Adv. Mech. Math., 18, Springer, 2009.

25. Sofonea, M., Matei, A., Mathematical Models in Contact Mechanics, London Math. Soc. Lecture Note Ser. 398, Cambridge University Press, 2012.

26. Touzaline, A., Optimal control of a frictional contact problem, Acta Math. Appl. Sin. Engl. Ser., 31(4)(2015), 991-1000.

27. Xu, W., Wang, C., et al., Numerical analysis of doubly-history dependent variational in- equalities in contact mechanics, Fixed Point Theory Algorithms Sci. Eng. 2021, 24(2021).

28. Zeidler, E., Nonlinear Functional Analysis and its Applications. IV: Applications to Mathematical Physics, Springer, New York, 1988.

Downloads

Published

2024-12-13

How to Cite

GUETTAF, R., & TOUZALINE, A. (2024). Optimal control of a frictional contact problem with unilateral constraints. Studia Universitatis Babeș-Bolyai Mathematica, 69(4), 913–925. https://doi.org/10.24193/subbmath.2024.4.15

Issue

Section

Articles