Nonnegative solutions for a class of fourth order singular eigenvalue problems

Authors

DOI:

https://doi.org/10.24193/subbmath.2024.4.14

Keywords:

Fixed point, fourth-order boundary value problem, positive solution, cone

Abstract

In this paper, we discuss the existence of nonnegative solutions to a fourth order singular boundary value problem at two points. Our result is based on a recent Birkhoff-Kellogg type fixed point theorem developed on translates of a cone on a Banach space.

Mathematics Subject Classification (2010): 47H10, 34B09, 34B16.

References

1. Bai, Z., The method of lower and upper solutions for a bending of an elastic beam equation, J. Math. Anal. Appl., 248(2000), no. 1, 195-202.

2. Bai, Z., Wang, H., On positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270(2002), no. 2, 357-368.

3. Benslimane, S., Georgiev, S.G., Mebarki, K., Multiple nonnegative solutions for a of class fourth-order BVPs via a new topological approach, Adv. Theory Nonlinear Anal. Appl., 6(2022), no. 3, 390-404.

4. Bouchal, L., Georgiev, S.G., Mebarki, K., On the existence of solutions for a class of nonlinear fully fourth order differential system, Proyecciones, 43(2024), no. 3, 613-629.

5. Calamai, A., Infante, G., An affine Birkhoff-Kellogg-type result in cones with applications to functional differential equations, Math. Methods Appl. Sci., (2022), 1-9.

6. Calamai, A., Infante, G., On fourth order retarded equations with functional boundary conditions: A unified approach, Discrete Contin. Dyn. Syst. - S, Early access January 2023.

7. Feng, M., Ge, W., Existence of positive solutions for singular eigenvalue problems, Electron. J. Differential Equations, 2006(2006), no. 105, 1-9.

8. Han, G., Xu, Z., Multiple solutions of some nonlinear fourth-order beam equations, Non-linear Anal., 68(2008), no. 12, 3646-3656.

9. Liu, B., Positive solutions of fourth-order two point boundary value problems, Appl. Math. Comput., 148(2004), no. 2, 407-420.

10. Ma, R., Wang, H., On the existence of positive solutions of fourth-order ordinary differential equations, Appl. Anal., 59(1995), no. 1-4, 225-231.

11. Pang, C., Dong, W., Wei, Z., Multiple solutions for fourth-order boundary value problem, J. Math. Anal. Appl., 314(2006), no. 2, 464-476.

12. Yao, Q., Positive solutions for eigenvalue problems of fourth-order elastic beam equations, Appl. Math. Lett., 17(2004), no. 2, 237-243.

13. Zhu, Y., Weng, P., Multiple positive solutions for a fourth-order boundary value problem, Bol. Soc. Parana. Mat., 21(2003), no. 1-2, 9-19.

Downloads

Published

2024-12-13

How to Cite

BOUCHAL, L., MEBARKI, K., & GEORGIEV, S. G. (2024). Nonnegative solutions for a class of fourth order singular eigenvalue problems. Studia Universitatis Babeș-Bolyai Mathematica, 69(4), 905–912. https://doi.org/10.24193/subbmath.2024.4.14

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.