Subclass of analytic functions on q-analogue connected with a new linear extended multiplier operator

Authors

  • Ekram E. ALI Department of Mathematics, College of Science, University of Ha’il, Saudi Arabia; Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Port Said, Egypt. Email: e.ahmad@uoh.edu.sa https://orcid.org/0000-0002-5477-0065

DOI:

https://doi.org/10.24193/subbmath.2024.4.07

Keywords:

q-derivative operator, analytic functions, q-analogue of Choi-Saigo-Srivastava operator

Abstract

Using a new linear extended multiplier q-Choi-Saigo-Srivastava operator we define a subclass subordination and the newly defined q-analogue of the Choi-Saigo-Srivastava operator to the class of analytic functions. For this class, conclusions are drawn that include coefficient estimates, integral representation, linear combination, weighted and arithmetic means, and radius of starlikeness.

Mathematics Subject Classification (2010): 30C45, 30C80.

References

1. Aldweby, H., Darus, M., Some subordination results on q-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., (2014), 958563, 6 pp.

2. Ali, E.E., Bulboacă, T., Subclasses of multivalent analytic functions associated with a q-difference operator, Mathematics, 8(2020), 2184.

3. Ali, E.E., Lashin, A.M., Albalahi, A.M., Coefficient estimates for some classes of bi-univalent function associated with Jackson q-difference operator, J. Funct. Spaces, (2022), 2365918, 8 pp.

4. Ali, E.E., Oros, G.I., Shah, S.A., Albalahi, A.M., Applications of q-calculus multiplier operators and subordination for the study of particular analytic function subclasses, Mathematics, 11(2023), 2705.

5. Al-Oboudi, F.M., On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math Sci., 27(2004), 1429-1436.

6. Al-Oboudi, F.M., Al-Amoudi, K.A., On classes of analytic functions related to conic domain, J. Math. Anal. Appl., 339(2008), 655-667.

7. Aouf, M.K., Mostafa, A.O., Elmorsy, R.E., Certain subclasses of analytic functions with varying arguments associated with q-difference operator, Afr. Mat., 32(2021), 621–630.

8. Bulboacă, T., Differential Subordinations and Superordinations. Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.

9. Cătaș, A., On certain classes of p-valent functions defined by multiplier transformations, in Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings (Istanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatog¸ lu, Editors), pp. 241–250, TC Istanbul Kűltűr University Publications, Vol. 91, TC Istanbul Kűltűr University, Istanbul, Turkey, 2008.

10. Cho, N.E., Srivastava, H.M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Model., 37(2003), 39–49.

11. El-Ashwah, R.M., Aouf, M.K., Shamandy, A., Ali, E.E., Subordination results for some subclasses of analytic functions, Math. Bohem., 136(2011), 311–331.

12. Govindaraj, M., Sivasubramanian, S., On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43(2017), 475-487.

13. Jackson, F.H., On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh, 46(1908), 253–281.

14. Jackson, F.H., On q-definite integrals, Quart., J. Pure Appl. Math., 41(1910), 193–203.

15. Jafari, M., Motamednezad, A., Adegani, E.A., Coefficient estimates for a subclass of ana- lytic functions by Srivastava-Attiya operator, Stud. Univ. Babes-Bolyai Math., 67(2022), 739-747.

16. Janowski, W., Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28(1973), 297–326.

17. Kanas, S., Raducanu, D., Some class of analytic functions related to conic domains, Math. Slovaca, 64(2014), 1183–1196.

18. Kota, W.Y., El-Ashwah, R.M., Some application of subordination theorems associated with fractional q-calculus operator, Math. Bohem., 148(2023), No. 2, 131-148.

19. Liu, M.-S., On a subclass of p-valent close to convex functions of type α and order β, J. Math. Study, 30(1997), 102–104.

20. Mahmood, S., Sokol, J., New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math., 71(2017), 1–13.

21. Mason, T.E., On properties of the solution of linear q-difference equations with entire function coefficients, Amer. J. Math., 37(1915), 439-444.

22. Miller, S.S., Mocanu, P.T., Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171.

23. Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, Series on Monographs and Texbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.

24. Mohammed, N.H., Cho, N.E., Adegani, E.A., Bulboacă, T., Geometric properties of normalized imaginary error function, Stud. Univ. Babeș-Bolyai Math., 67(2022), 455- 462.

25. Noor, K.I., On new classes of integral operator, J. Natur. Geom., 16(1999), 71–80.

26. Noor, K.I., Noor, M.A., On integral operators, J. Math. Anal. Appl., 238(1999), 341-352.

27. Sălăgean, G.S., Subclasses of univalent functions, in Complex Analysis-Fifth Romanian- Finish Seminar, Part-I, Bucharest, 1981, in Lecture notes in Math., Vol. 1013, Springer, Berlin, 1983, pp. 362-372.

28. Shareef, Z., Hussain, S., Darus, M., Convolution operator in geometric functions theory, J. Inequal. Appl., 213(2012), 1-11.

29. Srivastava, H.M., Khan, S., Ahmad, Q.Z., Khan, N., Hussain, S., The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babecs-Bolyai Math., 63(2018), 419–436.

30. Wang, Z.G., Hussain, S., Naeem, M., Mahmood, T., Khan, S., A subclass of univalent functions associated with q−analogue of Choi-Saigo-Srivastava operator, Hacet. J. Math. Stat., XX(x)(2019), 1–9.

Downloads

Published

2024-12-13

How to Cite

ALI, E. E. (2024). Subclass of analytic functions on q-analogue connected with a new linear extended multiplier operator. Studia Universitatis Babeș-Bolyai Mathematica, 69(4), 801–811. https://doi.org/10.24193/subbmath.2024.4.07

Issue

Section

Articles

Similar Articles

<< < 23 24 25 26 27 28 29 30 31 32 > >> 

You may also start an advanced similarity search for this article.