Bounds of third and fourth Hankel determinants for a generalized subclass of bounded turning functions subordinated to sine function

Authors

DOI:

https://doi.org/10.24193/subbmath.2024.4.06

Keywords:

Analytic functions, Subordination, Coefficient inequalities, sine function, third Hankel determinant, fourth Hankel determinant

Abstract

The objective of this paper is to investigate the bounds of third and fourth Hankel determinants for a generalized subclass of bounded turning functions associated with sine function, in the open unit disc E = {z C : |z| < 1}. The results are also extended to two-fold and three-fold symmetric functions. This investigation will generalize the results of some earlier works.

Mathematics Subject Classification (2010): 30C45, 30C50, 30C80.

References

1. Altinkaya, Ș., Yalçin, S., Third Hankel determinant for Bazilevic functions, Adv. Math., Sci. J., 5(2016), no. 2, 91-96.

2. Arif, M., Rani, L., Raza, M., Zaprawa, P., Fourth Hankel determinant for the family of functions with bounded turning, Bull. Korean Math. Soc., 55(2018), no. 6, 1703-1711.

3. Arif, M., Raza, M., Tang, H., Hussain, S., Khan, H., Hankel determinant of order three for familiar subsets of analytic functions related to sine function, Open Math., 17(2019), 1615-1630.

4. Babalola, K. O., On H3(1) Hankel determinant for some classes of univalent functions, Inequal. Theory Appl., 6(2010), 1-7.

5. Bieberbach, L., Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsberichte Preussische Akademie der Wissenschaften, 138(1916), 940-955.

6. Bucur, R., Breaz, D., Georgescu, L., Third Hankel determinant for a class of analytic functions with respect to symmetric points, Acta Univ. Apulensis, 42(2015), 79-86.

7. Cho, N.E., Kumar, V., Kumar, S.S., Ravichandran, V., Radius problems for starlike functions associated with sine function, Bull. Iranian Math. Soc., 45(2019), 213-232.

8. De-Branges, L., A proof of the Bieberbach conjecture, Acta Math., 154(1985), 137-152.

9. Ehrenborg, R., The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107(2000), 557-560.

10. Janteng, A., Halim, S.A., Darus, M., Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1(2007), no. 13, 619-625.

11. Khan, M.G., Ahmad, B., Sokol, J., Muhammad, Z., Mashwani, W.K., Chinram, R., Petchkaew, P., Coefficient problems in a class of functions with bounded turning associated with sine function, Eur. J. Pure Appl. Math., 14(2021), no. 1, 53-64.

12. Layman, J.W., The Hankel transform and some of its properties, J. Integer Seq., 4(2001), 1-11.

13. Libera, R.J., Zlotkiewiez, E.J., Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(1982), 225-230.

14. Libera, R.J., Zlotkiewiez, E.J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(1983), 251-257.

15. Ma, W., Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl. 234(1999), 328-329.

16. MacGregor, T.H., Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104(1962), 532-537.

17. MacGregor, T.H., The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14(1963), 514-520.

18. Mehrok, B.S., Singh, G., Estimate of second Hankel determinant for certain classes of analytic functions, Sci. Magna, 8(2012), no. 3, 85-94.

19. Murugusundramurthi, G., Magesh, N., Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant, Bull. Math. Anal. Appl., 1(2009), no. 3, 85-89.

20. Noor, K.I., Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roumaine Math. Pures Appl., 28(1983), no. 8, 731-739.

21. Pommerenke, C., On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41(1966), 111-122.

22. Pommerenke, C., Univalent Functions, Math. Lehrbucher, Vandenhoeck and Ruprecht, Gottingen, 1975.

23. Ravichandran, V., Verma, S., Bound for the fifth coefficient of certain starlike functions, Comptes Rendus Math., 353(2015), 505-510.

24. Reade, M.O., On close-to-convex univalent functions, Michigan Math. J., 3(1955-56), 59-62.

25. Shanmugam, G., Stephen, B.A., Babalola, K.O., Third Hankel determinant for α starlike functions, Gulf J. Math., 2(2014), no. 2, 107-113.

26. Singh, G., Hankel determinant for a new subclass of analytic functions, Sci. Magna, 8(2012), no. 4, 61-65.

27. Singh, G., Singh, G., Hankel determinant problems for certain subclasses of Sakaguchi-type functions defined with subordination, Korean J. Math., 30(2022), no. 1, 81-90.

28. Singh, G., Singh, G., Singh, G., Upper bound on fourth Hankel determinant for certain subclass of multivalent functions, Jnanabha, 50(2020), no. 2, 122-127.

29. Singh, G., Singh, G., Singh, G., Fourth Hankel determinant for a subclass of analytic functions defined by generalized Salagean operator, Creat. Math. Inform., 31(2022), no. 2, 229-240.

30. Zhang, H. Y., Tang, H., A study of fourth order Hankel determinant for starlike functions connected with the sine function, J. Funct. Spaces, 2021, Article Id. 9991460, 8 pages.

Downloads

Published

2024-12-13

How to Cite

SINGH, G., & SINGH, G. (2024). Bounds of third and fourth Hankel determinants for a generalized subclass of bounded turning functions subordinated to sine function. Studia Universitatis Babeș-Bolyai Mathematica, 69(4), 789–800. https://doi.org/10.24193/subbmath.2024.4.06

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.