Univalence conditions of an integral operator on the exterior unit disk
DOI:
https://doi.org/10.24193/subbmath.2024.4.03Keywords:
Univalent functions, analytic functions, integral operators, exterior unit diskAbstract
In this article, we consider the subclasses Vj, Vj,µ and j(p), with j = 2, 3, ..., and generalize univalence conditions for the integral operator Gαi,β of the analytic functions g in the exterior unit disk. We want to see if some univalent conditions for analytic functions obtained on the interior unit disk can be extended on the exterior unit disk, so we make use of the usual transformation g(z)=1f(1/z).g(z)=1f(1/z).
Mathematics Subject Classification (2010): 30C45.
References
1. Breaz, D., Breaz, N., The univalent conditions for an integral operator on the classes S(p) and T2, J. Approx. Theory Appl., 1(2005), no. 2, 93-98.
2. Breaz, D., Breaz, N., Sufficient univalence conditions for analytic functions, J. Inequal. Appl., 2007(2008), doi.org/10.1155/2007/86493.
3. Bulut, S., Some extensions of sufficient conditions for univalence of an integral operator on the classes Tj, Tj,µ and Sj (p), Acta Univ. Apulensis Math. Inform., (2019), no. 19, 167-177.
4. Kohr, G., Mocanu, P.T., Capitole Speciale de Analiză Complexă, 2005, 133-144.
5. Nehari, Z., Conformal Mapping, McGraw-Hill, New York, NY, USA, 1952.
6. Nehari, Z., Conformal Mapping, Dover, New York, NY, USA, 1975.
7. Pascu, N., An improvement of Becker’s univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, University of Brașov, (1987), 43-48.
8. Pârva, O., Breaz, D., Univalence conditions for analytic functions on the exterior unit disk, J. Adv. Math. Stud., 16(2023), no. 2, 125-133.
9. Pârva, O., Breaz, D., Univalence properties of an integral operator, Afr. Mat, 33, no. 37, 2022, doi.org/10.1007/s13370-022-00975-0.
10. Seenivagan, N., Breaz, D., Certain sufficient conditions for univalence, Gen. Math. 15(2007), no. 4, 7-15.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.