Symmetric Toeplitz Determinants for Classes Defined by Post Quantum Operators Subordinated to the Limaçon Function

Authors

  • Vijayalakshmi SANGARAMBADI PADMANABHAN Department of Mathematics, Dawaraka Doss Goverdhan Doss Vaishnav College, Gokul Bagh, Arumbakkam, India. Email: vijishreekanth@gmail.com.
  • Thirumalai VINJIMUR SUDHARSAN Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai, India. Email: tvsudharsan@rediffmail.com. https://orcid.org/0000-0002-6882-3367
  • Teodor BULBOACĂ Faculty of Mathematics and Computer Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania. Email: bulboaca@math.ubbcluj.ro. https://orcid.org/0000-0001-8026-218X

DOI:

https://doi.org/10.24193/subbmath.2024.2.04

Keywords:

Limaçon domain, subordination, (p, q)–derivative, Toeplitz and Hankel determinants, symmetric Toeplitz determinant, logarithmic coefficients, starlike functions with respect to symmetric points

Abstract

The present extensive study is focused to find estimates for the upper bounds of the Toeplitz determinants. The logarithmic coefficients of univalent functions play an important role in different estimates in the theory of univalent functions, and in this paper we derive the estimates of Toeplitz determinants and Toeplitz determinants of the logarithmic coefficients for the subclasses.

Mathematics Subject Classification (2010): 30C45, 30C50, 30C55.

Received 11 November 2023; Accepted 11 March 2024

References

Ahuja, O.P., Hadamard products and neighborhoods of classes of spiral-like functions, Yokohama Math. J., 40(1993), no. 2, 95–103.

Alimohammadi, D., Adegani, E.A., Bulboacă, T., Cho, N.E., Logarithmic coefficients bounds and coefficient conjectures for classes associated with con- vex functions, J. Funct. Spaces, Vol. 2021, Art. ID 6690027, 2021, 7 pages, https://doi.org/10.1155/2021/6690027.

Alimohammadi, D., Adegani, E.A., Bulboacă, T., Cho, N.E., Logarithmic coefficients for classes related to convex functions, Bull. Malays. Math. Sci. Soc., 44(2021), 2659–2673, https://doi.org/10.1007/s40840-021-01085-z.

Aral, A., Gupta, V., Agarwal, R., Applications of q–Calculus in Operator Theory, Springer, New York, 2013.

Chakrabarti, R., Jagannathan, R., A (p, q)–oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen., 24(1991), no. 13, L711.

Duren, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259, Springer, New York, 1983.

Firoz Ali, Md., Thomas, D.K., Vasudevarao, A., Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc., 97(2018), no. 2, 253–264, doi:10.1017/S0004972717001174.

Giri, S., Kumar, S.S., Toeplitz determinants of logarithmic coefficients for starlike and convex functions, https://arxiv.org/abs/2303.14712v1.

Guo, D., Tang, H., Li, Z., Xu, Q., Ao, E., Coefficient problems for a class of univalent functions, Mathematics, 11(2023), no. 8, 1–14, https://doi.org/10.3390/math11081835.

Jha, A.K., Sahoo, P., Upper bounds of Toeplitz determinants for a subclass of alpha-close-to-convex functions, Creat. Math. Inform., 31(2022), no. 1, 81–90, https://doi.org/10.37193/CMI.2022.01.08.

Kanas, S., Adegani, E.A., Zireh, A., A unified approach to second Hankel determinant of bi-subordinate functions, Mediterr. J. Math., 14(233)(2017), 1–12, https://doi.org/10.1007/s00009-017-1031-6.

Kayumov, I.P., On Brennan’s conjecture for a special class of functions, Math. Notes, 78(2005), 498–502, https://doi.org/10.1007/s11006-005-0149-1.

Masih, V.S., Kanas, S., Subclasses of starlike and convex functions associated with the limaçon domain, Symmetry, 12(2020), no. 6, 942, 1–11, https://doi.org/10.3390/sym12060942.

Milin, I.M., Univalent Functions and Orthonormal Systems, Izdat. Nauka, Moscow, 1971 (in Russian); English Transl. Amer. Math. Soc., Providence, 1977.

Murugusundaramoorthy, G., Bulboacă, T., Hankel determinants for a new subclass of analytic functions related to a shell shaped region, Mathematics, 8(2020), no. 6, 1–14, https://doi.org/10.3390/math8061041.

Parida, L., Bulboacă, T., Sahoo, A.K., Hankel determinants for a new subclass of analytic functions involving a linear operator, Kragujevac J. Math., 46(2022), no. 4, 605–616, DOI:10.46793/KgJMat2204.605P.

Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan, 11(1959), 72–75. 18. Sudharsan, T.V., Vijayalakshmi, S.P., Stephen, B.A., Third Hankel determinant for a subclass of analytic univalent functions, Malaya J. Mat., 2(2014), no. 4, 438–444, https://doi.org/10.26637/mjm204/011.

Thomas, D.K., Abdul Halim, S., Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions, Bull. Malays. Math. Sci. Soc., 40(2017), no. 4, 1781–1790, https://doi.org/10.1007/s40840-016-0385-4.

Ye, K., Lim, L.-H., Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16(2016), 577–598, DOI 10.1007/s10208-015-9254-z.

Yunus, Y., Abdul Halim, S., Akbarally, A.B., Subclass of starlike functions associated with a limaçon, AIP Conference Proceedings 1974, 030023(2018), https://doi.org/10.1063/1.5041667.

Downloads

Published

2024-06-18

How to Cite

SANGARAMBADI PADMANABHAN, V., VINJIMUR SUDHARSAN, T. ., & BULBOACĂ, T. . (2024). Symmetric Toeplitz Determinants for Classes Defined by Post Quantum Operators Subordinated to the Limaçon Function. Studia Universitatis Babeș-Bolyai Mathematica, 69(2), 299–316. https://doi.org/10.24193/subbmath.2024.2.04

Issue

Section

Articles

Similar Articles

<< < 18 19 20 21 22 23 24 25 26 27 > >> 

You may also start an advanced similarity search for this article.