Multiplicity results for nonhomogenous elliptic equation involving the generalized Paneitz-Branson operator

Authors

  • Kamel TAHRI High School of Management; Abou Bekr Belkaid University, Tlemcen, Algeria. Email: tahrikamel@yahoo.fr.

DOI:

https://doi.org/10.24193/subbmath.2023.4.19

Keywords:

Riemannian manifold, multiplicity result, nonhomogenous, Paneitz- Branson operator, critical points theory

Abstract

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 without boundary ∂M, we consider the multiplicity result of solutions of the following nonhomogenous fourth order elliptic equation involving the generalized Paneitz-Branson operator, Pg (u) = f (x) |u|2 2 u + h(x). Under some conditions and using critical points theory, we prove the existence of two distinct solutions of the above equation. At the end, we give a geometric example when the equation has negative and positive solutions.

Mathematics Subject Classification (2010): 58J05, 58E99.

Received 08 December 2020; Accepted 22 September 2021. Published Online: 2023-12-11 Published Print: 2023-12-30

References

Ambrosetti, A., Rabinowitz, P., Dual variational methods in critical point theory and applications, J. Funct. Anal., 11(1973), 349-381.

Benalili, M., Tahri, K., Nonlinear elliptic fourth order equations existence and multiplicity results, NoDEA Nonlinear Differential Equations Appl., 18(2011), 539-556.

Bernis, F., Garcia-Azorero, J., Peral, I., Existence and multiplicity of non-trivial solutions in semilinear critical problems of fourth order, Adv. Partial Differ. Equ. (Basel), (1996), 219-240.

Branson, T.P., Ørsted, B., Explicit functional determinants in four dimensions, Proc. Amer. Math. Soc., 113(1991), no. 3, 669-682.

Brézis, H., Lieb, E.A., A relation between pointwise convergence of functions and con- vergence of functionals, Proc. Amer. Math. Soc., 88(1983), 486-490.

Caraffa, D., Equations elliptiques du quatrième ordre avec exposants critiques sur les variétés riemanniennes compactes, J. Math. Pures Appl., 80(2001), no. 9, 941-960.

Djadli, Z., Hebey, E., Ledoux, M., Paneitz-type operators and applications, Duke Math. J., 104(2000), no. 1, 129-169.

Ekeland, I., On the variational principle, J. Math. Anal. Appl., 47(1974), 324-353.

Lions, P.L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam., 1(1985), 145-201.

Paneitz, S.M., A quartic conformally covariant differential operator for arbitrary pseudo- Riemannian manifolds, SIGMA Symmetry Integrability Geom. Methods Appl., 4(2008), Paper 036, 3.

Tahri, K., Les Equations Elliptiques du Quatrième Ordre sur une Variété Rie- mannienne, Abou Bekr Belkaid University, Tlemcen, Algeria, 1-209, (Uni Website: http://dspace.univ-tlemcen.dz), June 2015.

Downloads

Published

2023-12-11

How to Cite

TAHRI, K. (2023). Multiplicity results for nonhomogenous elliptic equation involving the generalized Paneitz-Branson operator. Studia Universitatis Babeș-Bolyai Mathematica, 68(4), 931–941. https://doi.org/10.24193/subbmath.2023.4.19

Issue

Section

Articles

Similar Articles

<< < 24 25 26 27 28 29 

You may also start an advanced similarity search for this article.