Coincidence point theorems in some generalized metric spaces
DOI:
https://doi.org/10.24193/subbmath.2023.4.18Keywords:
dislocated metric space, semimetric space, singlevalued and multivalued mapping, comparison function, comparison pair, lower semi-continuity, coincidence point displacement functional, pre-weakly Picard mapping.Abstract
Let (X, d) be a complete dislocated metric space, (Y, ρ) be a semimetric space and f, g : X → Y be two mappings. Several coincidence point results are obtained for singlevalued and multivalued mappings.
Mathematics Subject Classification (2010): 54H25, 47H10, 47H04, 54C60, 47H09.
Received 17 July 2023; Accepted 09 October 2023. Published Online: 2023-12-11 Published Print: 2023-12-30
References
Berinde, V., Iterative Approximation of Fixed Points, Springer, 2007.
Berinde, V., Petrușel, A., Rus, I.A., Remarks on the terminology of the mappings in fixed point iterative methods, in metric spaces, Fixed Point Theory, 24(2023), no. 2, 525-540.
Blumenthal, L.M., Theory and Applications of Distance Geometry, Oxford, 1953.
Buică, A., Principii de coincidență și aplicații, Presa Universitară Clujeană, Cluj-Napoca, 2001.
Filip, A.-D., Fixed Point Theory in Kasahara Spaces, Casa Cărții de Știință, Cluj- Napoca, 2015.
Filip, A.-D., Conversion between generalized metric spaces and standard metric spaces with applications in fixed point theory, Carpathian J. Math., 37(2021), no. 2, 345-354.
Kirk, W.A., Sims, B., (eds.), Handbook of Metric Fixed Point Theory, Kluwer, 2001. [8] Petrușel, A., A generalization on Peetre-Rus theorem, Stud. Univ. Babeș-Bolyai Math., 35(1990), 81-85.
Petrușel, A., Rus, I.A., Șerban, M.A., Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem for a multivalued operator, J. Nonlinear Convex Anal., 15(2014), 493-513.
Rus, I.A., Around metric coincidence point theory, Stud. Univ. Babeș-Bolyai Math., 68(2023), no. 2, 449-463.
Rus, I.A., Petrușel, A., Petrușel, G., Fixed-Point Theory, Cluj University Press, Cluj-Napoca, 2008.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.