Triangle angle sums related to translation curves in Sol geometry

Authors

  • Jenő SZIRMAI Department of Geometry, Institute of Mathematics, Budapest University of Technology and Economics, Muegyetem rkp. 3., H-1111 Budapest, Hungary, e-mail: szirmai@math.bme.hu https://orcid.org/0000-0001-9610-7993

DOI:

https://doi.org/10.24193/subbmath.2022.3.14

Keywords:

Thurston geometries, Sol geometry, translation and geodesic triangles, interior angle sum.

Abstract

After having investigated the geodesic and translation triangles and their angle sums in Nil and S---L2R geometries we consider the analogous problem in Sol space that is one of the eight 3-dimensional Thurston geometries. We analyse the interior angle sums of translation triangles in Sol geometry and prove that it can be larger or equal than π. In our work we will use the projective model of Sol described by E. Molnar in [9].

Mathematics Subject Classification (2010): 53A20, 53A35, 52C35, 53B20.

Received 13 August 2020; Accepted 16 August 2020.

References

Brieussel, J., Tanaka, R., Discrete random walks on the group Sol, Isr. J. Math., 208(2015), no. 1, 291-321.

Brodaczewska, K., Elementargeometrie in Nil, Dissertation (Dr. Rer. Nat.) Fakulta¨t Mathematik und Naturwissenschaften der Technischen Universit¨at Dresden, 2014.

Cavichioli, A., Molna´r, E., Spaggiari, F., Szirmai, J., Some tetrahedron manifolds with Sol geometry, J. Geom., 105(2014), no. 3, 601-614.

Chavel, I., Riemannian Geometry: A Modern Introduction. Cambridge Studies in Advances Mathematics, 2006.

Csima, G., Szirmai, J., Interior angle sum of translation and geodesic triangles in S---L2R space, Filomat, 32/14(2018), 5023-5036.

Kobayashi, S., Nomizu, K., Fundation of Differential Geometry, I., Interscience, Wiley, New York, 1963.

Kotowski, M., Vira´g, B., Dyson’s spike for random Schroedinger operators and Novikov-Shubin invariants of groups, Commun. Math. Phys., 352(2017), 905-933.

Milnor, J., Curvatures of left Invariant metrics on Lie groups, Advances in Math., 21(1976), 293-329.

Molnar, E., The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitr. Algebra Geom., 38(1997), no. 2, 261-288.

Molnar, E., Szilagyi, B., Translation curves and their spheres in homogeneous geometries, Publ. Math. Debrecen, 78(2010), no. 2, 327-346.

Molna´r, E., Szirmai, J., Symmetries in the 8 homogeneous 3-geometries, Symmetry Cult. Sci., 21(2010), no. 1-3, 87-117.

Molna´r, E., Szirmai, J., Classification of Sol lattices, Geom. Dedicata, 161(2012), no. 1, 251-275.

Molna´r, E., Szirmai, J., Vesnin, A., Projective metric realizations of cone-manifolds with singularities along 2-bridge knots and links, J. Geom., 95(2009), 91-133.

Molna´r, E., Szirmai, J., Vesnin, A., Packings by translation balls in S---L2R, J. Geom., 105(2014), no. 2, 287-306.

Scott, P., The geometries of 3-manifolds, Bull. London Math. Soc., 15(1983), 401-487. [16] Szirmai, J., A candidate to the densest packing with equal balls in the Thurston geometries, Beitr. Algebra Geom., 55(2014), no. 2, 441-452.

Szirmai, J., Bisector surfaces and circumscribed spheres of tetrahedra derived by translation curves in Sol geometry, New York J. Math., 25(2019), 107-122.

Szirmai, J., The densest translation ball packing by fundamental lattices in Sol space, Beitr. Algebra Geom., 51(2010), no. 2, 353-373.

Szirmai, J., Nil geodesic triangles and their interior angle sums, Bull. Braz. Math. Soc. (N.S.), 49(2018), 761-773.

Thurston, W.P. (and Levy, S. editor), Three-Dimensional Geometry and Topology, Princeton University Press, Princeton, New Jersey, vol. 1, 1997.

Downloads

Published

2022-09-20

How to Cite

SZIRMAI, J. (2022). Triangle angle sums related to translation curves in Sol geometry. Studia Universitatis Babeș-Bolyai Mathematica, 67(3), 621–631. https://doi.org/10.24193/subbmath.2022.3.14

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.