Global nonexistence of solutions to a logarithmic nonlinear wave equation with infinite memory and delay term
DOI:
https://doi.org/10.24193/subbmath.2023.4.12Keywords:
Logarithmic source, blow up, wave equation, negative, initial energy, delay term.Abstract
As a continuity to the study by M. Kafini [24], we consider a logarithmic nonlinear wave condition with delay term. We obtain a blow-up result of solutions under suitable conditions.
Mathematics Subject Classification (2010): 35B05, 35L05, 35L15.
Received 10 March 2021; Accepted 03 June 2021. Published Online: 2023-12-11 Published Print: 2023-12-30
References
Abdallah, C., Dorato, P., Benitez-Read, J., et al., Delayed positive feedback can stabilize oscillatory system, San Francisco, CA: ACC, (1993), 3106-3107.
Al-Gharabli, M.M., Messaoudi, S.A., Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, J. Evol. Equ., 18(2018), 105-125.
Ball, J.M., Remarks on blow up and nonexistence theorems for nonlinear evolutions equations, Quart. J. Math. Oxford, 28(1977), 473-486.
Bartkowski, K., Górka, P., One-dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A. Math. Theor., 41(2008), 355201.
Bialynicki-Birula, I., Mycielski, J., Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astron. Phys., 23(1975), 461-466.
Boulaaras, S., Ouchenane, D., General decay for a coupled Lamé system of nonlinear viscoelastic equations, Math. Meth. Appl. Sci., 43(2020), no. 4, 1717-1735.
Brézis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, New York, Springer, 2010.
Cazenave, T., Haraux, A., Équations d’évolution avec non-linéarité logarithmique, Ann. Fac. Sci. Toulouse Math., 5(1980), no. 2, 21-51.
Choucha, A., Boulaaras, S., Ouchenane, D., Exponential decay of solutions for a viscoelastic coupled Lamé system with logarithmic source and distributed delay terms, Math. Meth. Appl. Sci., 2020 (in press).
Choucha, A., Ouchenane, D., Boulaaras, S., Well posedness and stability result for a thermoelastic laminated Timoshenko beam with distributed delay term, Math. Meth. Appl. Sci., 43(2020), 9983-10004.
Dafermos, C.M., Asymptotic stability in viscoelasticity, Arch. Ration Mech. Anal., 37(1970), 297-308.
Dafermos, C.M., An abstract Volterra equation with applications to linear viscoelasticity, J. Differ. Equ., 7(1970), 554-569.
Datko, R., Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26(1988), no. 3, 697-713.
Datko, R., Lagnese, J., Polis, M.P., An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24(1986), no. 1, 152- 156.
De Martino, S., Falanga, M., Godano, C., Lauro, G., Logarithmic Schrödinger-like equation as a model for magma transport, Europhys. Lett., 63(2003), no. 3, 472-475.
Feng, H., Li, S., Global nonexistence for a semilinear wave equation with nonlinear boundary dissipation, J. Math. Anal. Appl., 391(2012), no. 1, 255-264.
Georgiev, V., Todorova, G., Existence of solutions of the wave equation with nonlinear damping and source terms, J. Differ. Equ., 109(1994), 295-308.
Górka, P., Logarithmic quantum mechanics: Existence of the ground state, Found Phys. Lett., 19(2006), 591-601.
Górka, P., Convergence of logarithmic quantum mechanics to the linear one, Lett. Math.
Phys., 81(2007), 253-264.
Górka, P., Logarithmic Klein-Gordon equation, Acta Phys. Polon. B., 40(2009), 59-66.
Guo, Y., Rammaha, M.A., Blow-up of solutions to systems of nonlinear wave equations with supercritical sources. Appl. Anal., 92(2013), 1101-1115.
Han, X., Global existence of weak solution for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc., 50(2013), 275-283.
Hiramatsu, T., Kawasaki, M., Takahashi, F., Numerical study of Q-ball formation in gravity mediation, J. Cosmol. Astropart. Phys., 6(2010), 008.
Kafini, M., Messaoudi, S.A., Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay, Appl. Anal., 1-18. https://doi.org/10.1080/00036811.2018.1504029.2018.
Komornik, V., Exact Controllability and Stabilization. The Multiplier Method, Paris, Masson-John Wiley, 1994.
Levine, H.A., Some additional remarks on the nonexistence of global solutions to non- linear wave equation, SIAM J. Math. Anal., 5(1974), 138-146.
Levine, H.A., Instability and nonexistence of global solutions of nonlinear wave equation of the form Putt = Au + F (u), Trans. Amer. Math. Soc., 192(1974), 1-21.
Levine, H.A., Serrin, J., A global nonexistence theorem for quasilinear evolution equation with dissipation, Arch. Ration. Mech. Anal., 137(1997), 341-361.
Lions, J.L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, 2nd ed. Paris, Dunod, 2002.
Messaoudi, S.A., Blow up in a nonlinearly damped wave equation, Math. Nachr.,
(2001), 1-7.
Ouchenane, D., A stability result of a Timoshenko system in thermoelasticity of second sound with a delay term in the internal feedback, Georgian Math. J., 21(2014), no. 4, 475-489.
Ouchenane, D., Boulaaras, S.M., Alharbi, A., Cherif, B., Blow up of coupled nonlinear Klein-Gordon system with distributed delay, strong damping, and source terms, Hindawi J.F.S, ID 5297063, 1-9. https://doi.org/10.1155/2020/5297063, 2020.
Ouchenane, D., Zennir, K., Bayoud, M., Global nonexistence of solutions for a system of nonlinear viscoelastic wave equation with degenerate damping and source terms, Ukr. Math. J., 65(7)(2013), 723-739.
Rahmoune, A., Ouchenane, D., Boulaaras, D., Agarwal, S., Growth of solutions for a coupled nonlinear Klein–Gordon system with strong damping, source, and distributed delay terms, Adv. Difference Equ., 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.