On certain properties of some subclasses of univalent functions

Authors

  • Milutin OBRADOVIĆ Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia. Email: obrad@grf.bg.ac.rs. https://orcid.org/0000-0001-8890-0764
  • Nikola TUNESKI Department of Mathematics and Informatics, Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia. Email: nikola.tuneski@mf.edu.mk. https://orcid.org/0000-0003-3889-0048

DOI:

https://doi.org/10.24193/subbmath.2023.4.06

Keywords:

univalent, inverse functions, coefficients, sharp bound

Abstract

In this paper we determine the disks |z|< r ≤ 1where for different classes of univalent functions, we have the property

Mathematics Subject Classification (2010): 30C45.

Received 18 December 2020; Accepted 02 January 2021.. Published Online: 2023-12-11 Published Print: 2023-12-30

References

Duren, P.L. Univalent Functions, Springer-Verlag, New York, 1983.

Jovanović, I., Obradović, M., A note on certain classes of univalent functions, Filomat, 9(1995), no. 1, 69-72.

Miller, S.S., Mocanu, P.T., Reade, M.O., All α-convex functions are univalent and star-like, Proc. Amer. Math. Soc., 37(1973), 553-554.

Obradović, M., Ponnusamy, S., New criteria and distortion theorems for univalent functions, Complex Variables, Theory and Application: An International Journal, 44(2001), 173-191.

Obradović, M., Ponnusamy, S., On the class U, Proc. 21st Annual Conference of the Jammu Math. Soc. and a National Seminar on Analysis and its Application, (2011), 11-26.

Obradović, M., Ponnusamy, S., Radius properties for subclasses of univalent functions, Analysis, 25(2005), 183-188.

Obradović, M., Ponnusamy, S., Wirths, K. J., Coefficients characterizations and sections for some univalent functions, Sib. Math. J., 54(2013), no. 4, 679-696.

Obradović, M., Tuneski, N., Some properties of the class U, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 73(2019), no. 1, 49-56.

Thomas, D.K., Tuneski, N., Vasudevarao, A., Univalent Functions: A Primer, De Gruyter Studies in Mathematics, 69, De Gruyter, Berlin, Boston, 2018.

Downloads

Published

2023-12-11

How to Cite

OBRADOVIĆ, M., & TUNESKI, N. (2023). On certain properties of some subclasses of univalent functions. Studia Universitatis Babeș-Bolyai Mathematica, 68(4), 767–773. https://doi.org/10.24193/subbmath.2023.4.06

Issue

Section

Articles

Similar Articles

<< < 19 20 21 22 23 24 

You may also start an advanced similarity search for this article.