Implicit Caputo-Fabrizio fractional differential equations with delay

Authors

DOI:

https://doi.org/10.24193/subbmath.2023.4.03

Keywords:

Caputo-Fabrizio fractional order derivative, implicit, delay, fixed point.

Abstract

This article deals with some existence and uniqueness results for several classes of implicit fractional differential equations with delay. Our results are based on some fixed point theorems. To illustrate our results, we present some examples in the last section.

Mathematics Subject Classification (2010): 26A33, 34A08, 34K37

Received 01 February 2021; Accepted 22 April 2021. Published Online: 2023-12-11 Published Print: 2023-12-30

References

Abbas, S., Benchohra, M., Graef, J.G., Henderson, J., Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.

Abbas, S., Benchohra, M., N'Géreékata, G.M., Topics in Fractional Differential Equations, Springer, New York, 2012.

Abbas, S., Benchohra, M., N'Géreékata, G.M., Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.

Abbas, S., Benchohra, M., Nieto, J.J., Functional implicit hyperbolic fractional order differential equations with delay, Afr. Diaspora J. Math., 15(2013), no. 1, 74-96.

Abbas, S., Benchohra, M., Vityuk, A.N., On fractional order derivatives and Darboux problem for implicit differential equations, Frac. Calc. Appl. Anal., 15(2012), 168-182.

Albarakati, W., Benchohra, M., Lazreg, J.E., Nieto, J.J., Anti-periodic boundary value problem for nonlinear implicit fractional differential equations with impulses, Analele Univ. Oradea Fasc. Mat., 25(2018), no. 1, 13-24.

Appell, J., Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator, J. Math. Anal. Appl., 83(1981), 251-263.

Benchohra, M., Bouriah, S., Henderson, J., Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses, Comm. Appl. Nonlinear Anal., 22(2015), no. 1, 46-67.

Benchohra, M., Lazreg, J.E., On stability for nonlinear implicit fractional differential equations, Matematiche (Catania), 70(2015), no. 2, 49-61.

Benchohra, M., Lazreg, J.E., Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivatives, Stud. Univ. Babeș-Bolyai Math., 62(2017), no. 1, 27-38.

Caputo, M., Fabrizio, M., A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2015, no. 1, 73-85.

Granas, A., Dugundji, J., Fixed Point Theory, Springer-Verlag, New York, 2003.

Hale, J.K., Kato, J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21(1978), 11-41.

Hale, J.K., Verduyn Lunel, S.M., Introduction to Functional-Differential Equations, Springer-Verlag, New York, 1991.

Hernández, E., On abstract differential equations with state dependent non-local conditions, J. Math. Anal. Appl., 466(2018), no. 1, 408-425.

Hernández, E., Azevedo, K.A.J., Rolnik, V., Wellposedness of abstract differential equations with state dependent delay, Math. Nachrichten, 291(2018), no. 13, 2045-2056.

Hernández, E., Fernandes, D., Wu, J., Well-posedness of abstract integro-differential equations with state-dependent delay, Proc. Amer. Math. Soc., 148(2020), no. 4, 1595-1609.

Hino, Y., Murakami, S., Naito, T., Functional Differential Equations with Infinite Delay, Lecture Notes in Math., 1473, Springer-Verlag, Berlin, Heidelberg, New York, 1991.

Hino, Y., Murakami, S., Naito, T., Minh, N.V., A variation-of-constants formula for abstract functional differential equations in phase space, J. Differential Equations, 179(2002), 336-355.

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.

Krim, S., Abbas, S., Benchohra, M., Darwish, M.A., Boundary value problem for implicit Caputo{Fabrizio fractional differential equations, Int. J. Difference Equ., 15(2020), no. 2, 493-510.

Kucche, K.D., Nieto, J.J., Venktesh, V., Theory of nonlinear implicit fractional differential equations, Differ. Equ. Dynam. Syst., 28(2020), 117.

Losada, J., Nieto, J.J., Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2015, no. 1, 87-92.

Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian.

Tarasov, V.E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.

Tenreiro Machado, J.A., Kiryakova, V., The chronicles of fractional calculus, Fract. Calc. Appl. Anal., 20(2017), 307-336.

Vityuk, A.N., Mykhailenko, A.V., The Darboux problem for an implicit fractional-order differential equation, J. Math. Sci., 175(2011), no. 4, 391-401.

Zhou, Y., Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.

Downloads

Published

2023-12-11

How to Cite

KRIM, S., ABBAS, S., BENCHOHRA, M., & NIETO, J. J. . (2023). Implicit Caputo-Fabrizio fractional differential equations with delay. Studia Universitatis Babeș-Bolyai Mathematica, 68(4), 727–742. https://doi.org/10.24193/subbmath.2023.4.03

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.