Identification of induction curves

Authors

DOI:

https://doi.org/10.24193/subbmath.2023.3.01

Keywords:

Matrix norms, power norm, p-norm, induction curves, identification, optimization, p-eigenvectors, Nelder–Mead method.

Abstract

Induction curves (induction surfaces, induction sets in general) were recently introduced to provide a visual aid to examine the fractions defining the norm of a matrix, along with the discovery and description of p-eigenvectors. In our current investigation we delve into an inverse problem, the identification of induction curves. Namely: could the elements of the matrix and the used power parameter p be reconstructed given the induction curve, i.e. the case of 2 × 2 matrices is examined. The analytic solution is not possible in most cases already in this planar setting, therefore numerical approximation methods shall be applied.

Mathematics Subject Classification (2010): 15A83, 47A30, 65F20, 65F35.

 

References

Argyros, I.K., George, S., Senapati, K., Extended local convergence for Newton-type solver under weak conditions, Stud. Univ. Babeș-Bolyai Math., 66(2021), no. 4, 757-768.

Bokor, J., Schipp, F., Approximate linear H∞ identification in Laguerre and Kautz basis, Automatica J. IFAC, 34(1998), 463-468.

Cadzow, J.A., Minimum l1, l2 and l∞ norm approximate solutions to an overdetermined system of linear equations, Digital Signal Processing, 12(2002), 524-560.

Chang, S., Li, C.K., Certain isometries on Rn, Linear Algebra Appl., 165(1992), 251-265.

Csirmaz, L., An optimization problem for continuous submodular functions, Stud. Univ. Babeș-Bolyai Math., 66(2021), no. 1, 211-222.

Fărcășeanu, M., Grecu, A., Mihăilescu, M., Stancu-Dumitru, D., Perturbed eigenvalue problems: An overview, Stud. Univ. Babeș-Bolyai Math., 66(2021), no. 1, 55-73.

Fridli, S., Lócsi, L., Schipp, F., Rational function systems in ECG processing, Proc. 13th Int. Conf. Computer Aided Systems Theory (EUROCAST), Part I, Springer LNCS 6927 (2011), 88-95.

Hegedűs, Cs., The method IRLS for some best lp norm solutions of under- or overdetermined linear systems, Ann. Univ. Sci. Budapest. Sect. Comput., 45(2016), 303-317.

Kovács, P., Lócsi, L., RAIT, the Rational Approximation and Interpolation Toolbox for Matlab, with experiments on ECG signals, Int. J. of Advances in Telecommunications, Electrotechnics, Signals and Systems (IJATES2), 1(2012), no. 2-3, 67-75.

Li, C.K., So, W., Isometries of fp norm, Amer. Math. Monthly, 101(1994), 452-453.

Lócsi, L., A hyperbolic variant of the Nelder-Mead simplex method in low dimensions, Acta Univ. Sapientiae Math., 5(2013), no. 2, 169-183.

Lócsi, L., Introducing p-eigenvectors, exact solutions for some simple matrices, Ann. Univ. Sci. Budapest. Sect. Comput., 49(2019), 325-345.

Lócsi, L., Németh, Zs., On the construction of p-eigenvectors, Ann. Univ. Sci. Budapest. Sect. Comput., 50(2020), 231-247.

Nelder, J.A., Mead, R., A simplex method for function minimization, Comput. J., 7(1965), 308-313.

Samia, K., Djamel, B., Hybrid conjugate gradient-BFGS methods based on Wolfe line search, Stud. Univ. Babeș-Bolyai Math., 67(2022), no. 4, 855-869.

Schipp, F., On Lp-norm convergence of series with respect to product systems, Anal. Math., 2(1976), 49-64.

Vinh, N.T., Thuong, N.T., A relaxed version of the gradient projection method for variational inequalities with applications, Stud. Univ. Babeș-Bolyai Math., 67(2022), no. 1, 73-89.

Downloads

Published

2023-09-30

How to Cite

LÓCSI, L. . (2023). Identification of induction curves. Studia Universitatis Babeș-Bolyai Mathematica, 68(3), 467–480. https://doi.org/10.24193/subbmath.2023.3.01

Issue

Section

Articles

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.