Around metric coincidence point theory

Authors

  • Ioan A. RUS Babe¸s-Bolyai University, Faculty of Mathematics and Computer Sciences, 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania e-mail: iarus@math.ubbcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2023.2.18

Keywords:

Metric space, singlevalued and multivalued mapping, coincidence point metric condition, fixed point metric condition, covering mapping, coincident point displacement, fixed point displacement, iterative approximation of coincidence point, iterative approximation of fixed point, weakly Picard mapping, pre-weakly Picard mapping, Ulam-Hyers stability, well-posedness of coincidence point problem.

Abstract

In this paper we give an abstract coincidence point result with respect to which some results such as of Peetre-Rus (I.A. Rus, Teoria punctului fix ˆın analiza func¸tionala˘, Babe¸s- Bolyai Univ., Cluj-Napoca, 1973), A. Buic˘a (A. Buic˘a, Principii de coinciden¸ta ¸si aplica¸tii, Presa Univ. Clujean˘a, Cluj-Napoca, 2001) and A.V. Arutyunov (A.V. Arutyunov, Covering mappings in metric spaces and fixed points, Dokl. Math., 76(2007), no.2, 665-668) appear as corollaries. In the case of multivalued mappings our result generalizes some results given by A.V. Arutyunov and by A. Petru¸sel (A. Petru¸sel, A generalization of Peetre-Rus theorem, Studia Univ. Babe¸s-Bolyai Math., 35(1990), 81-85). The impact on metric fixed point theory is also studied.

Mathematics Subject Classification (2010): 54H25, 47H10, 47H04, 54C60, 47H09.

Received 04 January 2023; Accepted 01 March 2023.

References

Aamri, M., Chaira, K., Approximation du point fixe et applications faiblement contractantes, Extracta Mathematicae, 17(2002), no. 1, 97-110.

Aldea, F., Buică, A., On Peetre’s condition in the coincidence theory, Proceed. Seminar T. Popoviciu, Cluj-Napoca, 2000, 1-8.

Angrisani, M., Clavelli, M., Synthetic approaches to problems of fixed points in metric space, Ann. Mat. Pura ed Appl., 170(1996), 1-12. DOI: https://doi.org/10.1007/bf01758980.

Anisiu, M.-C., Point-to-set mappings. Continuity, Sem. Fixed Point Theory, Preprint Nr. 3(1981), Babeș-Bolyai Univ., Cluj-Napoca, 1-100.

Arutyunov, A.V., Covering mappings in metric spaces and fixed points, Doklady Math., 76(2007), no. 2, 665-668. DOI: https://doi.org/10.1134/s1064562407050079.

Arutyunov, A.V., Coincidence points of two maps, Funct. Anal. Appl., 48(2014), no. 1, 72-75. DOI: https://doi.org/10.1007/s10688-014-0047-y.

Arutyunov, A.V., The coincidence point problem for set-valued mappings and Ulam-Hyers stability, Doklady Math., 89(2014), no. 2, 188-191, DOI: https://doi.org/10.1134/s1064562414020197.

Arutyunov, A.V., Greshnov, A.V., (q1, q2)-quasimetric spaces. Covering mappings and coincidence points. A review of the results, Fixed Point Theory, 23(2022), no. 2, 473-486.

Aubin, J.-P., Frankowska, H., Set-valued Analysis, Birkhauser, 1990.

Azé, D., Penot, J.-P., On the dependence of fixed-point sets of pseudo-contractive multifunctions. Application to differential inclusions, Nonlinear Dyn. Syst. Theory, 6(2006), no. 1, 31-47.

Beer, G., Topologies on Closed and Closed Convex Sets, Kluwer, 1993.

Berinde, V., Iterative Approximation of Fixed Points, Springer Berlin, Heidelberg, 2007. DOI: https://doi.org/10.1007/978-3-540-72234-2.

Berinde, V., Petrușel, A, Rus, I.A., Remarks on the terminology of the mappings in fixed point iterative methods, in metric spaces, (to be published).

Borwein, J.M., Zhuang, D.M., Verifiable necessary and sufficient conditions for openness and regularity of set-valued and single-valued maps, J. Math. Anal. Appl., 134(1988), 441-459. DOI: https://doi.org/10.1016/0022-247x(88)90034-0.

Buică, A., Principii de coincidență și aplicații, Presa Universitară Clujeană, Napoca, 2001.

Cârjă, O., Elemente de analiză funcțională neliniară, "A.I. Cuza" Univ., Iași, 1998.

Dontchev, A.L., Frankowska, H., Lyusternik-Graves theorem and fixed points, Proc. Amer. Math. Soc., 139(2011), no. 2, 521-534. DOI: https://doi.org/10.1090/s0002-9939-2010-10490-2.

Dontchev, A.L., Rockafeller, R.T., Implicit Functions and Solution Mappings, Springer, New York, 2014. DOI: https://doi.org/10.1007/978-0-387-87821-8.

Feng, Y., Liu, S., Fixed point theorems for multivalued contractive mappings and multivalued Caristi’s fixed point theorems, J. Math. Anal. Appl., 317(2006), 103-112.

Filip, A.-D., Fixed Point Theory in Kasahara Spaces, Casa Cărții de Știință, Cluj- Napoca, 2015.

George, J.H., Sehgal, V.M., Smithson, R.E., Application of Liapunov’s direct method to fixed point theorems, Proc. Amer. Math. Soc., 28(1971), no. 2, 613-620. DOI: https://doi.org/10.2307/2038023.

Granas, A., Dugundji, J., Fixed Point Theory, Springer, 2003.

Hicks, T.L., Rhoades, B.E., A Banach type fixed point theorem, Math Japonica, 24(1979), 327-330.

Hu, S., Papageorgiou, N.S., Handbook of Multivalued Analysis, Vol. I-II, Kluwer, 1997 and 2000. DOI: https://doi.org/10.1007/978-1-4615-6359-4 and DOI: https://doi.org/10.1007/978-1-4615-4665-8.

Ioffe, A.D., Implicit functions: A metric theory, Set-valued Var. Anal., 25(2017), 679-699. DOI: https://doi.org/10.1007/s11228-017-0417-8.

Kirk, W.A., Saliga, L.M., Some results on existence and approximation in metric fixed point theory, J. Comput. Appl. Math., 113(2000), 141-152. DOI: https://doi.org/10.1016/s0377-0427(99)00249-6.

Kirk, W.A., Shahzad, N., Remarks on metric transforms and fixed point theorems, Fixed Point Theory Appl., 106(2013). https://doi.org/10.1186/1687-1812-2013-106.

Kirk, W.A., Sims, B., (eds.), Handbook of Metric Fixed Point Theory, Kluwer, 2001. DOI: https://doi.org/10.1007/978-94-017-1748-9

Kuratowski, C., Topology, Acad. Press, New York, 1966.

Mleșnițe, O., Covering mappings and Ulam-Hyers stability results for coincidence problems, Carpathian J. Math., 31(2015), no. 1, 97-104. DOI: https://doi.org/10.37193/cjm.2015.01.11.

Nadler, S.B., Multivalued contraction mappings, Pacific J. Math., 30(1969), no. 2, 475-488.

Ortega, J.M., Rheinboldt, W.C., Iterative Solution of Nonlinear Equations in Several Variables, Acad. Press, New York, 1970.

Pathak, H.K., Shahzad, N., A generalization of Nadler’s fixed point theorem and its application to nonconvex integral inclusions, Topological Methods in Nonlinear Anal., 41(2013), no. 1, 207-227.

Penot, J.-P., Metric regularity, openness and Lipschitzean behaviour multifunctions, Nonlinear Anal., 13(1989), 629-643. DOI: https://doi.org/10.1016/0362-546x(89)90083-7.

Petrușel, A., A generalization of Peetre-Rus theorem, Studia Univ. Babeș-Bolyai Math., 35(1990), 81-85.

Petrușel, A., Generalized multivalued contractions, Nonlinear Anal., 47(2001), 649-659. DOI: https://doi.org/10.1016/s0362-546x(01)00209-7.

Petrușel, A., Operator Inclusions, House of the Book of Science, Cluj-Napoca, 2002.

Petrușel, A., Multivalued weakly Picard operators and applications, Scientiae Math. Japon., 59(2004), 169-202.

Petrușel, A., Rus, I.A., Șerban, M.A., Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem for a multivalued operator, J. Nonlinear Convex Anal., 15(2014), 493-513.

Petrușel, A., Rus, I.A., Yao, J.-C., Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math., 11(2007), no. 3, 903-914. DOI: https://doi.org/10.11650/twjm/1500404764.

Precup, R., A fixed point theorem of Maia type in syntopogenous spaces, Sem. on Fixed Point Theory, Preprint Nr. 3(1988), Babeș-Bolyai Univ. Cluj-Napoca, 49-70.

Rus, I.A., Teoria punctului fix în analiza funcțională, Babeș-Bolyai University, Cluj-Napoca, 1973.

Rus, I.A., Some remarks on coincidence theory, Pure Math. Manuscript, 9(1990-91), 137-148.

Rus, I.A., Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.

Rus, I.A., Results and problems in Ulam stability of operatorial equations and inclusions, 323-352. In: Th.M. Rassias (ed.), Handbook of Functional Equations: Stability Theory, Springer, 2014. DOI: https://doi.org/10.1007/978-1-4939-1286-5 15.

Rus, I.A., Some variants of contraction principle, generalizations and applications, Stud. Univ. Babeș-Bolyai Math., 61(2016), no. 3, 343-358.

Rus, I.A., Relevant classes of weakly Picard operators, An. Univ. Vest Timișoara, Mat.-Inform., 54(2016), no. 2, 131-147. DOI: https://doi.org/10.1515/awutm-2016-0019

Rus, I.A., Sets with structure, mappings and fixed point property: fixed point structures, Fixed Point Theory, 23(2022), no. 2, 689-706.

Rus, I.A., Petrușel, A., Petrușel, G., Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.

Rus, I.A., Petrușel, A., Sîntămărian, A., Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal., 52(2003), 1947-1959. DOI: https://doi.org/10.1016/s0362-546x(02)00288-2.

Sîntămărian, A., Weakly Picard pairs of some multivalued operators, Mathematical Communications, 8(2003), no. 1, 49-53.

Wegrzyk, R., Fixed point theorems for multifunctions and their applications to functional equations, Diss. Math., 201(1982).

Zhou, Y.-H., Yu, J., Yang, H., Xiang, S.-W., Hadamard types of well-posedness of non-self set-valued mappings for coincidence points, Nonlinear Anal., 63(2005), e2427-e2436. DOI: https://doi.org/10.1016/j.na.2005.03.046

Zhukovskiy, S.E., Comparison of some types of locally covering mappings, Fixed Point Theory, 17(2016), no. 1, 215-222.

Zubelevich, O., Coincidence points of mappings in Banach spaces, Fixed Point Theory, 21(2020), no. 1, 389-394. DOI: https://doi.org/10.24193/fpt-ro.2020.1.27.

Downloads

Published

2023-06-14

How to Cite

RUS, I. A. (2023). Around metric coincidence point theory. Studia Universitatis Babeș-Bolyai Mathematica, 68(2), 449–463. https://doi.org/10.24193/subbmath.2023.2.18

Issue

Section

Articles

Similar Articles

<< < 22 23 24 25 26 27 28 29 30 31 > >> 

You may also start an advanced similarity search for this article.