An algorithm for solving a control problem for Kolmogorov systems

Authors

  • Alexandru HOFMAN Babe¸s-Bolyai University, Faculty of Mathematics and Computer Sciences, 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania e-mail: alexandru.hofman@ubbcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2023.2.09

Keywords:

Kolmogorov system, control problem, numerical algorithm.

Abstract

In this paper, a numerical algorithm is used for solving control prob- lems related to Kolmogorov systems. It is proved the convergence of the algorithm and by this it is re-obtained, by a numerical approach, the controllability of the investigated problems.

Mathematics Subject Classification (2010): 34H05, 93C15.

Received 20 October 2022; Accepted 04 November 2022.

References

Allen, L.J.S., An Introduction to Mathematical Biology, Pearson, 2006. 2. Barbu, V., Differential Equations, Springer, Cham, 2016.

Brauer, F., Castillo-Chavez, C., Mathematical Models in Population Biology and Epidemiology, Springer, Berlin, 2012.

Coron, J.-M., Control and Nonlinearity, Mathematical Surveys and Monographs, 136, Amer. Math. Soc., Providence, 2007.

Haplea, I.-S¸., Parajdi, L.-G., Precup, R., On the controllability of a system modeling cell dynamics related to leukemia, Symmetry, 13(2021), 1867.

Hofman, A., Precup, R., On some control problems for Kolmogorov type systems, Mathematical Modelling and Control, 2(2022), no. 3, 90-99.

Kolmogorov, A.N., Sulla teoria di Volterra della lotta per l’esistenza, Giornale dell Istituto Italiano degli Attuari, 7(1936), 74-80.

Murray, J.D., An Introduction to Mathematical Biology, Vol. 1, Springer, New York, 2011.

Precup, R., On some applications of the controllability principle for fixed point equations, Results Appl. Math., 13(2022), 100236.

Sigmund, K., Kolmogorov and Population Dynamics, In: É. Charpentier, A. Lesne, N.K. Nikolski (eds.), Kolmogorov’s Heritage in Mathematics, Springer, Berlin, 2007.

Downloads

Published

2023-06-14

How to Cite

HOFMAN, A. (2023). An algorithm for solving a control problem for Kolmogorov systems. Studia Universitatis Babeș-Bolyai Mathematica, 68(2), 331–340. https://doi.org/10.24193/subbmath.2023.2.09

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.