On a generalization of the Wirtinger inequality and some its applications
DOI:
https://doi.org/10.24193/subbmath.2023.2.01Keywords:
Integral operator, fractional calculus, Wirtinger inequality.Abstract
In this paper, we present generalized versions of the Wirtinger inequality, which contains as particular cases many of the well-known versions of this classic isoperimetric inequality. Some applications and open problems are also presented in the work.
Mathematics Subject Classification (2010): 26A33, 26Dxx, 35A23.
Received 27 August 2020; Accepted 22 September 2020.
References
Asliyuce, S., Wirtinger type inequalities via fractional integral operators, Stud. Univ. Babeș-Bolyai Math., 64(2019), no. 1, 35-42.
Atangana, A., Derivative with a New Parameter Theory, Methods and Applications, Academic Press, 2016.
Aziz, R., Kumawat, Y., Marichev-Saigo-Maeda fractional operators with extended Mittag-Leffler function and generalized Galue type Struve function, Adv. Math. Models Appl., 4(2019), no. 3, 210-223.
Baleanu, D., Comments On: Ortigueira M., Martynyuk V., Fedula M., Machado J.A.T., The failure of certain fractional calculus operators in two physical models, in Fract. Calc. Appl. Anal., 22(2019), no. 2, Fract. Calc. Appl. Anal., 23(2020), no. 1.
Baleanu, D., Fernandez, A., On fractional operators and their classifications, Mathematics, 7(2019), 830.
Beesack, P.R., Integral inequalities of the Wirtinger type, Duke Math. J., 25(1958), 477-498.
Cinar, I., On some properties of generalized Riesz potentials, Intern. Math. J., 3(2003), no. 12, 1393-1397.
Capelas de Oliveira, E., Tenreiro Machado, J.A. A review of definitions for fractional derivatives and integral, Math. Probl. Eng., Volume 2014, Article ID 238459, 6 pages http://dx.doi.org/10.1155/2014/238459
Diaz, J.B., Metcalf, F.T., Variations of Wirtinger's Inequality, Inequalities, Academic Press, New York, 1967, 79-103.
Ertugral, F., Sarikaya, M.Z., Some trapezoid type inequalities for generalized fractional integral, 2018, preprint.
Fleitas, A., Mendez, J.A., Napoles, J.E., Sigarreta, J.M., On some classical systems of Lienard in general context, Rev. Mexicana Fis., 65(2019), no. 6, 618-625.
Fleitas, A., Nápoles Valdés, J.E., Rodrguez, J.M., Sigarreta, J.M., On some fractional differential equations, (Submitted).
Guzman, P.M., Langton, G., Lugo, L.M., Medina J., Nápoles Valdés, J.E., A new definition of a fractional derivative of local type, J. Math. Anal. 9(2018), no. 2, 88-98.
Guzman, P.M., Lugo Motta Bittencurt, L.M., Nápoles Valdés, J.E., A note on stability of certain Lienard fractional equation, Int. J. Math. Comput. Sci., 14(2019), no. 2, 301-315.
Guzman, P.M., Lugo, L.M., Napoles, J.E., Vivas-Cortez, M., On a new generalized integral operator and certain operating properties, Axioms, 9(2020), no. 2, 69.
Gorenflo, R., Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer, Wien, 1997, 223-276.
Hardy, G.H., Littlewood, J.E., Polya, G., Inequalities, 2nd ed., Cambridge University Press, London and New York, 1959.
Helms, L.L., Introduction to Potential Theory, New York, Wiley-Interscience, 1969.
Hinton, D.B., Lewis, R.T., Discrete spectra criteria for singular differential operators with middle terms, Math. Proc. Cambridge Philos. Soc., 77(1975), 337-347.
Katugampola, U.N., New approach to a generalized fractional integral, Appl. Math. Comput., 218(2011), 860-865.
Katugampola, U.N., A new approach to generalized fractional derivatives, Bull. Math. Anal. App., 6(2014), 1-15.
Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264(2014), 65-70.
Ma, M., Baleanu, D., Gasimov, Y.S., Yang, X.-J., New results for multidimensional diffusion equations in fractal dimensional space, Rom. J. Phys., 61(2016), no. 5-6, 784-794.
Machado, J.T., Kiryakova, V., Mainardi, F., Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16(2011), 1140-1153.
Martinez, F., Mohammed, P.O., Napoles, V J.E., Non conformable fractional Laplace transform, Kragujevac J. Math., 46(2022), no. 3, 341-354.
Martinez, F., Napoles V., J.E., Towards a Non-Conformable Fractional Calculus of N-variables, J. Math. Appl. (to be published).
Martinez, C., Sanz, M., Periogo, F., Distributional fractional powers of Laplacian, Riesz potential, Studia Math., 135(1999), no. 3, 253-271.
Mitrinovic, D.S., Pecaric, J.E., Fink, A.M., Inequalities Involving Functions and Their Integrals and Derivatives, Dordrecht, 1991.
Nápoles Valdés, J.E., Guzman, P.M., Lugo, L.M., Some new results on nonconformable fractional calculus, Adv. Dyn. Syst. Appl., 13(2018), no. 2, 167-175.
Nápoles Valdés, J.E., Guzman, P.M., Lugo, L.M., Kashuri, A., The local non conformable derivative and Mittag Leffler function, Sigma J. Eng. Nat. Sci., 38(2020), no. 2, 1007-1017.
Nápoles Valdés, J.E., Rodriguez, J.M., Sigarreta, J.M., On Hermite-Hadamard type inequalities for non-conformable integral operators, Symmetry, 11(2019), no. 9, 1108.
Reis, J.C., Da Silva, P.N., Boldrini, J.L., Uma desigualdade do tipo Wirtinger, Cadernos do IME - Serie Matematica, 8(2014).
Sarikaya, M.Z., On the new Wirtinger type inequalities, Konuralp J. Math., 7(2019), no. 1, 112-116.
Sarikaya, M.Z., Bilisik, C.C., Wirtinger type inequalities for conformable fractional integrals, preprint.
Sarikaya, M.Z., Ertugral, F., On the generalized Hermite-Hadamard inequalities, 2017 (submitted).
Sarikaya, M.Z., Yildirim, H., On generalization of the Riesz potential, Indian J. Math. Math. Sci., 3(2007), no. 2, 231-235.
Swanson, C.A., Wirtinger's inequality, SIAM J. Math. Anal., 9(1978), no. 3, 484-491.
Umarov, S., Steinberg, S., Variable order differential equations with piecewise constant order-function and di
usion with changing modes, Z. Anal. Anwend., 28(2009), no. 4, 431-450.
Yang, X.-J., Gasimov, Y.S., Gao, F., Allahverdiyeva, N.A., Travelling-wave solutions for Klein-Gordon and Helmholtz equations on Cantor sets, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43(2017), no. 1, 123-131.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.