Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Authors

  • Silvestru Sever DRAGOMIR Mathematics, College of Engineering & Science Victoria University, PO Box 14428 Melbourne City, MC 8001, Australia School of Computational & Applied Mathematics University of the Witwatersrand, Private Bag 3 Johannesburg 2050, South Africa e-mail: sever.dragomir@vu.edu.au https://orcid.org/0000-0003-2902-6805
  • Ian GOMM Mathematics, College of Engineering & Science Victoria University, PO Box 14428 Melbourne City, MC 8001, Australia e-mail: ian.gomm@vu.edu.au

Keywords:

Convex functions, Hermite-Hadamard inequality, special means.

Abstract

Some inequalities of Hermite-Hadamard type for functions whose ex- ponentials are convex are obtained.

Mathematics Subject Classification (2010): 26D15, 25D10.

References

Dragomir, S.S., Pearce, C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, 2000.

Gill, P.M., Pearce, C.E.M., Pecaric, J., Hadamard's inequality for r-convex functions, J. of Math. Anal. and Appl., 215(1997), 461-470.

Sandor, J., On means generated by derivatives of functions, Inter. J. Math. Educ. Sci. Technol., 28(1)(1997), 146-148.

Sandor, J., On upper Hermite-Hadamard inequalities for geometric-convex and log-convex functions, Notes Number Th. Discr. Math., 20(2014), no. 5, 25-30.

Sandor, J., Toader, Gh., On some exponential means, Preprint, Babes-Bolyai Univ., Cluj, 1990, 35-40.

Sandor, J., Toader, Gh., Some general means, Czechoslovak Math. J., 49(124)(1999), 53-62.

Sandor, J., Toader, Gh., On some exponential means. Part II, Intern. J. Math. Math. Sci., 2006, ID 051937.

Song, Y., Long, B., Chu, Y., On Toader-Sandor mean, Intern. Math. Forum, 8(2013), no. 22, 1057-1067.

Toader, Gh., Sandor, J. Inequalities for general integral means, J. Inequal. Pure & Appl. Math., 7(2006), no. 1, Art. 13.

Downloads

Published

2015-12-30

How to Cite

DRAGOMIR, S. S., & GOMM, I. (2015). Some Hermite-Hadamard type inequalities for functions whose exponentials are convex. Studia Universitatis Babeș-Bolyai Mathematica, 60(4), 527–534. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5828

Issue

Section

Articles

Similar Articles

<< < 19 20 21 22 23 24 25 26 27 28 > >> 

You may also start an advanced similarity search for this article.