A unified local convergence for Chebyshev-Halley-type methods in Banach space under weak conditions

Authors

Keywords:

Chebyshev-Halley-type methods, Banach space, convergence ball, local convergence.

Abstract

We present a unified local convergence analysis for Chebyshev-Halley- type methods in order to approximate a solution of a nonlinear equation in a Banach space setting. Our methods include the Chebyshev; Halley; super-Halley and other high order methods. The convergence ball and error estimates are given for these methods under the same conditions. Numerical examples are also provided in this study.

Mathematics Subject Classification (2010): 65D10, 65D99, 65G99, 47H17, 49M15.

References

Amat, S., Busquier, S., Gutierrez, J.M., Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., 157(2003), 197-205.

Argyros, I.K., A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach spaces, J. Math. Anal. Appl., 20(2004), 373-397.

I Argyros, I.K., Computational theory of iterative methods. Series: Studies in Computational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co. New York, U.S.A, 2007.

Argyros, I.K., Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Austral. Math. Soc., 32(1985), 275-292.

Argyros, I.K., Hilout, S., Numerical methods in Nonlinear Analysis, World Scientific Publ. Comp., New Jersey, 2013.

Argyros, I.K., Hilout, S., Weaker conditions for the convergence of Newton's method, J. Complexity, 28(2012), 364{387.

Candela, V., Marquina, A., Recurrence relations for rational cubic methods I: The Halley method, Computing, 44(1990), 169-184.

Candela, V., Marquina, A., Recurrence relations for rational cubic methods II: The Chebyshev method, Computing, 45(1990), 355-367.

Chun, C., Stanica, P., Neta, B., Third order family of methods in Banach spaces, Computer Math. Appl., 61(2011), 1665-1675.

Gutierrez, J.M., Hernandez, M.A., Recurrence relations for the super-Halley method, Computer Math. Appl., 36(1998), 1-8.

Gutierrez, J.M., Hernandez, M.A., Third-order iterative methods for operators with bounded second derivative, Journal of Computational and Applied Mathematics, 82(1997), 171-183.

Hernandez, M.A., Salanova, MJ.A., Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, Journal of Computational and Applied Mathematics, 126(2000), 131-143.

Hernandez, M.A., Chebyshev's approximation algorithms and applications, Computer Math. Appl., 41(2001), 433-455.

Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982.

Ortega, J.M., Rheinboldt, W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

Parida, P.K., Gupta, D.K., Recurrence relations for semi-local convergence of a Newton-like method in Banach spaces, J. Math. Anal. Appl., 345(2008), 350-361.

Downloads

Published

2015-09-30

How to Cite

ARGYROS, I. K., & GEORGE, S. (2015). A unified local convergence for Chebyshev-Halley-type methods in Banach space under weak conditions. Studia Universitatis Babeș-Bolyai Mathematica, 60(3), 463–470. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5809

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.