Curves with constant geodesic curvature in the Bolyai-Lobachevskian plane

Authors

Keywords:

hyperbolic geometry, geodesics, orthogonal trajectory, polar coordinates.

Abstract

The aim of this note is to present the curves with constant geodesic curvature of the Bolyai-Lobachevskian hyperbolic plane. By using the Lobachevskian metric the equations of the circle, paracycloid and hipercycloid are given. Furthermore, we determine a new family of curves with constant curvature which was not emphasized before. During the analysis we use Cartesian and polar coordinates.

Mathematics Subject Classification (2010): 53A35.

References

Prekopa, A., Kiss, E., Staar, G., (eds.), Bolyai Eml_ekkonyv, Vince Kiado, Budapest, 2004.

Bonola, R., A nemeuklideszi geometria tortenete, P_avia, 1906.

Coxeter, H.S.M., Introduction to geometry, Wileg, New York, 2 edition, 1989.

Bolyai, J., Appendix, a ter tudomanya, Akademiai Kiado, Budapest, 1977.

David, L., Bolyai geometria az Appendix alapjan, Cluj, 1944.

Schlesinger, L., A ter absolute igaz tudomanya, Abel Kiado, Cluj-Napoca and Szeged, 2012.

Lobacsevszkij, N.I., Pangeometrie, Leipzig, 1902.

Lobacsevszkij, N.I., Geometriai vizsgalatok a parhuzamosok elmeletenek korebol, Akademiai Kiado, Budapest, 1951.

Sanielevici, S., Buletinul stiintific, sectiunea: matematica si fizica, 1951.

Downloads

Published

2015-09-30

How to Cite

GÁBOS, Z., & MESTER, Ágnes. (2015). Curves with constant geodesic curvature in the Bolyai-Lobachevskian plane. Studia Universitatis Babeș-Bolyai Mathematica, 60(3), 449–462. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5807

Issue

Section

Articles

Similar Articles

<< < 1 2 3 

You may also start an advanced similarity search for this article.