Curves with constant geodesic curvature in the Bolyai-Lobachevskian plane
Keywords:
hyperbolic geometry, geodesics, orthogonal trajectory, polar coordinates.Abstract
The aim of this note is to present the curves with constant geodesic curvature of the Bolyai-Lobachevskian hyperbolic plane. By using the Lobachevskian metric the equations of the circle, paracycloid and hipercycloid are given. Furthermore, we determine a new family of curves with constant curvature which was not emphasized before. During the analysis we use Cartesian and polar coordinates.
Mathematics Subject Classification (2010): 53A35.
References
Prekopa, A., Kiss, E., Staar, G., (eds.), Bolyai Eml_ekkonyv, Vince Kiado, Budapest, 2004.
Bonola, R., A nemeuklideszi geometria tortenete, P_avia, 1906.
Coxeter, H.S.M., Introduction to geometry, Wileg, New York, 2 edition, 1989.
Bolyai, J., Appendix, a ter tudomanya, Akademiai Kiado, Budapest, 1977.
David, L., Bolyai geometria az Appendix alapjan, Cluj, 1944.
Schlesinger, L., A ter absolute igaz tudomanya, Abel Kiado, Cluj-Napoca and Szeged, 2012.
Lobacsevszkij, N.I., Pangeometrie, Leipzig, 1902.
Lobacsevszkij, N.I., Geometriai vizsgalatok a parhuzamosok elmeletenek korebol, Akademiai Kiado, Budapest, 1951.
Sanielevici, S., Buletinul stiintific, sectiunea: matematica si fizica, 1951.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.