Estimates for the ratio of gamma functions by using higher order roots

Authors

  • Sorinel DUMITRESCU Ph. D. Student, University Politehnica of Bucharest Splaiul Independentei 313 Bucharest, Romania e-mail: sorineldumitrescu@yahoo.com

Keywords:

Gamma function, approximations, asymptotic series.

Abstract

It is the aim of this paper to give a systematically way for obtaining higher order roots estimates of the ratio …

Mathematics Subject Classification (2010): 26D15, 11Y25, 41A25, 34E05.

References

Boyd, A.V., Note on a paper by Uppuluri, Pacific J. Math., 22(1967), 9-10.

Chen, C.-P., Lin, L., Remarks on asymptotic expansions for the gamma function, Appl. Math. Letters, 25(2012), 2322-2326.

Chu, J.T., A modified Wallis product and some application, Amer. Math. Monthly, 69(1962), 402-404.

Kazarino_, N.D., Analytic Inequalities, Holt, Rhinehart and Winston, New York, 1961.

Mortici, C., New approximation formulas for evaluating the ratio of gamma functions, Math. Comp. Modelling, 52(2010), 425-433.

Mortici, C., Product approximation via asymptotic integration, Amer. Math. Monthly, 117(5)(2010), 434-441.

Mortici, C., Sharp inequalities and complete monotonicity for the Wallis ratio, Bull. Belg. Math. Soc. Simon Stevin, 17(2010), 929{936.

Mortici, C., A new method for establishing and proving new bounds for the Wallis ratio, Math. Inequal. Appl., 13(2010), 803-815.

Mortici, C., New approximation formulas for evaluating the ratio of gamma functions, Math. Comput. Modelling, 52(2010), 425-433.

Mortici, C., Completely monotone functions and the Wallis ratio, Applied Mathematics Letters, 25(2012), no. 4, 717-722.

Mortici, C., Estimating π from the Wallis sequence, Math. Commun., 17(2012), 489-495.

Mortici, C., Fast convergences towards Euler-Mascheroni constant, Comp. Appl. Math., 29(2011), no. 3, 479-491.

Mortici, C., On Gospers formula for the Gamma function, J. Math. Inequal., 5(2011), 611-614.

Mortici, C., Ramanujan's estimate for the gamma function via monotonicity arguments, Ramanujan J., 25(2011), no. 2, 149-154.

Mortici, C., On some Euler-Mascheroni type sequences, Comp. Math. Appl., 60(2010), no. 7, 2009-2014.

Mortici, C., New improvements of the Stirling formula, Appl. Math. Comp., 217(2010), no. 2, 699-704.

Mortici, C., Ramanujan formula for the generalized Stirling approximation, Appl. Math. Comp., 217(2010), no. 6, 2579-2585.

Mortici, C., New approximation formulas for evaluating the ratio of gamma functions, Math. Comp. Modelling, 52(2010), no. 1-2, 425-433.

Mortici, C., A continued fraction approximation of the gamma function, J. Math. Anal. Appl., 402(2013), no. 2, 405-410.

Mortici, C., Chen, C.-P., New sequence converging towards the Euler-Mascheroni constant, Comp. Math. Appl., 64(2012), no. 4, 391-398.

Mortici, C., Fast convergences toward Euler-Mascheroni constant, Comput. Appl. Math., 29(2010), no. 3, 479-491.

Mortici, C., Sharp bounds of the Landau constants, Math. Comp., 80(2011), 1011-1018.

Slavic, D.V., On inequalities for …, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 498-541(1975) 17-20.

Downloads

Published

2015-06-30

How to Cite

DUMITRESCU, S. (2015). Estimates for the ratio of gamma functions by using higher order roots. Studia Universitatis Babeș-Bolyai Mathematica, 60(2), 173–181. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5714

Issue

Section

Articles

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.