Iterates of increasing linear operators, via Maia's fixed point theorem

Authors

  • Ioan A. RUS Babes-Bolyai University Faculty of Mathematics and Computer Sciences 1, Kogalniceanu Street 400084 Cluj-Napoca, Romania e-mail: iarus@math.ubbcluj.ro

Keywords:

Banach lattice, order unit, increasing linear operator, invariant linear partition of the space, fixed point, weakly Picard operator, Maia's fixed point theorem, functional differential equation.

Abstract

Let X be a Banach lattice. In this paper we give conditions in which an increasing linear operator, A : X ! X is weakly Picard operator (see I.A. Rus, Picard operators and applications, Sc. Math. Japonicae, 58(2003), No. 1, 191-219). To do this we introduce the notion of \invariant linear partition of X with respect to A" and we use contraction principle and Maia's fixed point theorem. Some applications are also given.

Mathematics Subject Classification (2010): 47H10, 46B42, 47B65, 47A35, 34K06.

References

Abel, V., Ivan, M., Over-iterates of Bernstein operators: a short elementary proof, Amer. Math. Monthly, 116(2009), no. 6, 535-538.

Agratini, O., Rus, I.A., Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Anal. Forum, 8(2003), no. 2, 159-168.

Agratini, O., Rus, I.A., Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Carolinae, 44, 3(2003), 555-563.

Altomare, F., Campiti, M., Korovkin-type Approximation Theory and its Applications, de Gruyter, Berlin, 1999.

Andras, S., Iterates of the multidimensional Cesaro operators, Carpathian J. Math., 28(2012), no. 2, 191-198.

Andras, S., Rus, I.A., Iterates of Cesaro operators, via fixed point principle, Fixed Point Theory, 11(2010), no. 2, 171-178.

Berinde, V., Iterative Approximation of Fixed Points, Springer, 2007.

Bohl, E., Linear operator equations on a partially ordered vector space, Aequationes Math. 4(1970), no. 1/2, 89-98.

Catinas, T., Otrocol, D., Iterates of Bernstein type operators on a square with one curved side via contraction principle, Fixed Point Theory, 13(2012), no. 1, 97-106.

Cristescu, R., Spatii liniare ordonate, Editura Academiei, Bucuresti, 1959.

Cristescu, R., Ordered vector spaces and linear operators, Abacus Press, 1976.

Cristescu, R., Structuri de ordine in spatii liniare normate, Editura Stiintifica si Enciclopedica, Bucuresti, 1983.

Gavrea, I., Ivan, M., On the iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372(2010), 366-368.

Gavrea, I., Ivan, M., On the iterates of positive linear operators, J. Approx. Theory, 163(2011), 1076-1079.

Gavrea, I., Ivan, M., The iterates of positive linear operators preserving constants, Appl. Math. Letters, 24(2011), 2068-2071.

Gohberg, I., Goldberg, S., Kaashoek, M.A., Basic Classes of Linear Operators, Birkhauser, Basel, 2003.

Gonska, H., Kacso, D., Pitul, P., The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal., 1(2006), 403-423.

Gonska, H., Pitul, P., Remarks on an article of J.P. King, Comment. Math. Univ. Carolinae, 46, 4(2005), 645-652.

Gonska, H., Pitul, P., Rasa, I., Over-iterates of Berstein-Stancu operators, Calcolo, 44(2007), 117-125.

Gonska, H., Rasa, I., The limiting semigroup of the Berstein iterates: degree of convergence, Acta Math. Hungar., 111(2006), no. 1-2, 119-130.

Heikkila, S., Roach, G.F., On equivalent norms and the contraction mapping principle, Nonlinear Anal., 8(1984), no. 10, 1241-1252.

Jachymski, J., Convergence of iterates of linear operators and the Kelisky-Rivlin type theorems, Studia Math., 195(2009), no. 2, 99-112.

Kantorovici, L.V., Akilov, G.P., Analiza functionala, Bucuresti, 1986.

Kirk, W.A., Sims, B. (eds.), Handbook of Metric Fixed Point Theory, Kluwer, 2001.

Koliha, J.J., Convergent and stable operators and their generalization, J. Math. Anal. Appl., 43(1973), 778-794.

Petrusel, A., Rus, I.A., Serban, M.-A., Nonexpansive operators as graphic contractions (to appear).

Rasa, I., Asymptotic behavior of iterates of positive linear operators, Jaen J. Approx., 1(2009), no. 2, 195-204.

Rus, I.A., Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.

Rus, I.A., Picard operators and applications, Sc. Math. Japonicae, 58(2003), no. 1, 191-219.

Rus, I.A., Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.

Rus, I.A., Gronwall lemmas: ten open problems, Sc. Math. Japonicae, 70(2009), no. 2, 221-228.

Rus, I.A., Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26(2010), no. 2, 230-258.

Rus, I.A., Iterates of Stancu operators (via fixed point principles) revisited, Fixed Point Theory, 11(2010), no. 2, 369-374.

Rus, I.A., Fixed point and interpolation point set of positive linear operator on C(D), Studia Univ. Babes-Bolyai Math., 55(2010), no. 4, 243-248.

Rus, I.A., Five open problems in fixed point theory in terms of fixed point structures (I): singlevalued operators, Proc. 10th ICFPTA, 39-40, 2012, Cluj-Napoca, 2013.

Rus, I.A., Heuristic introduction to weakly Picard operator theory, Creat. Math. Inform., 23(2014), no. 2, 243-252.

Rus, I.A., Petrusel, A., Petrusel, G., Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.

Schaefer, H.H., Banach Lattices and Positive Operators, Springer, 1974.

Downloads

Published

2015-03-30

How to Cite

RUS, I. A. (2015). Iterates of increasing linear operators, via Maia’s fixed point theorem. Studia Universitatis Babeș-Bolyai Mathematica, 60(1), 91–98. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5676

Issue

Section

Articles

Similar Articles

<< < 19 20 21 22 23 24 25 26 27 28 > >> 

You may also start an advanced similarity search for this article.