Fixed point theorems for operators with a contractive iterate in b-metric spaces
Dedicated to Professor Ioan A. Rus on the occasion of his 80th anniversary
Keywords:
Fixed point, b-metric space, contractive iterate, data dependence, Ulam-Hyers stability.Abstract
We consider, in this paper, mappings with a contractive iterate at a point, which are not contractions, and prove some uniqueness and existence results in the case of b metric spaces. A data dependence result and an Ulam-Hyers stability result are also proved.
Mathematics Subject Classification (2010): 47H10, 54H25.
References
Aydi, H., Bota, M.F., Karapnar, E., Mitrovic, S., A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012, 2012:88.
Aydi, H., Bota, M.F., Karapnar, E., Moradi, S., A common fixed point for weak - contractions on b-metric spaces, Fixed Point Theory, 13(2012), no. 2, 337-346.
Bakhtin, I.A., The contraction mapping principle in quasimetric spaces, Funct. Anal., Unianowsk Gos. Ped. Inst., 30(1989), 26-37.
Barada, K., Rhoades, B., Fixed point jtheorems for mappings with a contractive, Pacific J. Math., 71(1977), no. 2, 517-520.
Berinde, V., Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint 3(1993), 3-9.
Berinde, V., Sequences of operators and fixed points in quasimetric spaces, Stud. Univ. Babes-Bolyai Math., 16(1996), no. 4, 23-27.
Blumenthal, L.M., Theory and Applications of Distance Geometry, Oxford, 1953.
Bota-Boriceanu, M.F., Petrusel, A., Ulam-Hyers stability for operatorial equations, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 57(2011), 65-74.
Boriceanu, M.F., Petrusel, A., Rus, I.A., Fixed point theorems for some multivalued generalized contractions in b-metric spaces, Int. J. Math. Stat., 6(2010), 65-76.
Bota, M.F., Dynamical Aspects in the Theory of Multivalued Operators, Cluj University Press, 2010.
Bourbaki, N., Topologie Generale, Herman, Paris, 1974.
Ciric, L., On Sehgal's maps with a contractive iterate at a point, Publ. Inst. Math. (N.S.), 33(1983), no. 47, 59-62.
Chis-Novac, A., Precup, R., Rus, I.A., Data dependence of fixed points for nonself generalized contractions, Fixed Point Theory, 10(2009), no. 1, 73-87.
Czerwik, S., Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
Czerwik, S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46(1998), 263-276.
Frechet, M., Les Espaces Abstraits, Gauthier-Villars, Paris,1928.
Guseman, Jr., L.F., Fixed Point Theorems for Mappings with a Contractive Iterate at a Point, Proc. Amer. Math. Soc., 26(1970), no. 4, 615-618.
Heinonen, J., Lectures on Analysis on Metric Spaces, Springer Berlin, 2001.
Matkowski, J., Fixed Point Theorems for Mappings with a Contractive Iterate at a Point, Proc. Amer. Math. Soc., 62(1977), no. 2, 344-348.
Rus, I.A., The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 9(2008), no. 2, 541-559.
Rus, I.A., Petrusel, A., Sntamarian, A., Data dependence of the fixed points set of some multivalued weakly Picard operators, Nonlinear Anal., 52(2003), 1947-1959.
Sehgal, V.M., A fixed point theorem for mappings with a contractive iterate, Proc. Amer. Soc., 23(1969), 631-634.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.