Global existence and blow-up of a Petrovsky equation with general nonlinear dissipative and source terms

Authors

  • Mosbah Kaddour Faculty of Mathematics and Computer Science, Mohamed Boudiaf University Algeria e-mail: mosbah_kaddour@yahoo.fr
  • Farid MESSELMI University of Djelfa Algeria e-mail: foudimath@yahoo.fr

DOI:

https://doi.org/10.24193/subbmath.2023.1.16

Keywords:

Global existence, blow-up, nonlinear source, nonlinear dissipative, Petrovsky equation.

Abstract

This work studies the initial boundary value problem for the Petrovsky equation with nonlinear damping.
Furthermore, we show that this solution blows up in a finite time when the initial energy is negative.

Mathematics Subject Classification (2010): 93C20, 93D15

Received 24 June 2020; Revised 221 July 2020. Published Online: 2023-03-20. Published Print: 2023-04-30

Author Biographies

Mosbah Kaddour, Faculty of Mathematics and Computer Science, Mohamed Boudiaf University Algeria e-mail: mosbah_kaddour@yahoo.fr

Faculty of Mathematics and Computer Science, Mohamed Boudiaf University-M’Sila 28000, Algeria e-mail: mosbah_kaddour@yahoo.fr

Farid MESSELMI, University of Djelfa Algeria e-mail: foudimath@yahoo.fr

Department of Mathematics and LDMM Laboratory Ziane Achour, University of Djelfa 17000, Algeria e-mail: foudimath@yahoo.fr

References

Adams, R.A, Sobolev Spaces, Academic Press, New York, 1975.

Amroun, N.E., Benaissa, A., Global existence and energy decay of solution to a Petroesky equation with general dissipation and source term, Georgian Math. J., 13(2006), no. 3, 397–410.

Dautray, R., Lions, J.L., Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, vol. 3, Masson, Paris, 1985.

Georgiev, V., Todorova, G., Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109(1994), no. 2, 295–308.

Guesmia, A., Existence globale et stabilisation interne non linéaire d’un systèm de Petrovsky, Bull. Belg. Math. Soc. Simon Stevin, 5(1998), 583–594.

Li, G., Sun, Y., Liu, W., Global existence and blow-up of solutions for a strongly damped Petrovsky system with nonlinear damping, Appl. Anal., 91(2012), no. 3, 575–586.

Lions, J.L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod Gautier-Villars, Paris, 1969.

Lions, J.L., Magenes, E., Problèmes aux Limites Non Homogènes et Applications, vol. 1, 2. Dunod, Paris, 1968.

Messaoudi, S.A., Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265(2002), no. 2, 296–308.

Piskin, E., Polat, N., On the decay of solutions for a nonlinear Petrovsky equation, Math. Sci. Lett., 3(2014), no. 1, 43–47.

Wenying, C., Yong, Z., Global nonexistence for a semilinear Petrovsky equation, Non-linear Anal., 70(2009), 3203–3208.

Wu, S.T., Tsai, L.Y., On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, Taiwanese J. Math., 19(2009), no. 2A, 545–558.

Downloads

Published

2023-03-20

How to Cite

Kaddour, M., & MESSELMI, F. (2023). Global existence and blow-up of a Petrovsky equation with general nonlinear dissipative and source terms. Studia Universitatis Babeș-Bolyai Mathematica, 68(1), 213–234. https://doi.org/10.24193/subbmath.2023.1.16

Issue

Section

Articles

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.