Radius of starlikeness through subordination

Authors

  • Asha SEBASTIAN National Institute of Technology, India e-mail: ashasebastian13@gmail.com https://orcid.org/0000-0002-5181-5926
  • Vaithiyanathan RAVICHANDRAN National Institute of Technology, India e-mail: vravi68@gmail.com; ravic@nitt.edu

DOI:

https://doi.org/10.24193/subbmath.2023.1.12

Keywords:

Univalent functions, convex functions, starlike functions, subordination, radius of starlikeness.

Abstract

A normalized function f on the open unit disc is starlike (or convex) univalent if the associated function zf/(z)/f (z) (or 1+zf//(z)/f/(z)) is a function with positive real part. The radius of starlikeness or convexity is usually obtained by using the estimates for functions with positive real part. Using subordination, we examine the radius of various starlikeness, in particular, radii of Janowski starlikeness and starlikeness of order β, for the function f when the function f is either convex or (zf/(z) + αf//(z))/f (z) lies in the right-half plane. Radii of starlikeness associated with lemniscate of Bernoulli and exponential functions are also considered.

Mathematics Subject Classification (2010): 30C80, 30C45.

Received 21 February 2020; Revised 09 March 2020. Published Online: 2023-03-20. Published Print: 2023-04-30

Author Biographies

Asha SEBASTIAN, National Institute of Technology, India e-mail: ashasebastian13@gmail.com

Department of Mathematics, National Institute of Technology, Tiruchirappalli-620015, India e-mail: ashasebastian13@gmail.com

Vaithiyanathan RAVICHANDRAN, National Institute of Technology, India e-mail: vravi68@gmail.com; ravic@nitt.edu

Department of Mathematics, National Institute of Technology, Tiruchirappalli-620015, India e-mail: vravi68@gmail.com; ravic@nitt.edu

References

Ali, R.M., Cho, N.E., Jain, N.K., Ravichandran, V., Radii of starlikeness and convexity for functions with fixed second coefficient defined by subordination, Filomat, 26(2012), no. 3, 553–561.

Ali, R.M., Jain, N.K., Ravichandran, V., Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput., 218(2012), no. 11, 6557–6565.

Aouf, M.K., Dziok J., Sokól, J., On a subclass of strongly starlike functions, Appl. Math. Lett., 24(2011), no. 1, 27–32.

de Branges, L., A proof of the Bieberbach conjecture, Acta Math., 154(1985), 137–152.

Gangadharan, A., Ravichandran, V., Shanmugam, T.N., Radii of convexity and strong starlikeness for some classes of analytic functions, J. Math. Anal. Appl., 211(1997), no. 1, 301–313.

Khatter, K., Ravichandran, V., Sivaprasad Kumar, S., Starlike functions associated with exponential function and the lemniscate of Bernoulli, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113(2019), no. 1, 233–253.

Lewandowski, Z.A., Miller, S., Zlotkiewicz, E., Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc., 56(1976), no. 1, 111–117.

Li, J.-L., Owa, S., Sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 33(2002), no. 3, 313–318.

Lindelöf, E., Mémoire sur certaines inégalités dans la théorie des fonctions monogènes et sur quelques propriétés nouvelles de ces fonctions dans le voisinage d’un point singulier essentiel, Acta Soc. Sci. Fenn., 35(1908), no. 7.

Liu, M.-S., Zhu, Y.-C., Srivastava, H.M., Properties and characteristics of certain subclasses of starlike functions of order β, Math. Comput. Modelling, 48(2008), no. 3-4, 402–419.

Ma, W.C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin), Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA., (1992), 157–169.

Mendiratta, R., Nagpal, S., Ravichandran, V., On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38(2015), no. 1, 365–386.

Miller, S.S., Mocanu, P.T., Differential subordinations and univalent functions, Michigan Math. J., 28(1981), no. 2, 157–172.

Naz, A., Nagpal, S., Ravichandran, V., Starlikeness associated with the exponential function, Turkish J. Math., 43(2019), no. 3, 1353–1371.

Nunokawa, M., On a sufficient condition for multivalently starlikeness, Tsukuba J. Math., 18(1994), no. 1, 131–134.

Obradović, M., Joshi, S.B., On certain classes of strongly starlike functions, Taiwanese J. Math., 2(1998), no. 3, 297–302.

Padmanabhan, K.S., On sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 32(2001), no. 4, 543–550.

Paprocki, E., Sokól, J., The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., (1996), no. 20, 89–94.

Ramesha, C., Kumar, S., Padmanabhan, K.S., A sufficient condition for starlikeness, Chinese J. Math., 23(1995), no. 2, 167–171.

Ravichandran, V., Certain applications of first order differential subordination, Far East J. Math. Sci. (FJMS), 12(2004), no. 1, 41–51.

Ravichandran, V., Hussain Khan, M., Silverman, H., Radius problems for a class of analytic functions, Demonstratio Math., 39(2006), no. 1, 67–74.

Ravichandran, V., Rønning, F., Shanmugam, T.N., Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Variables Theory Appl., 33(1997), no. 1-4, 265–280.

Ravichandran, V., Selvaraj, C., Rajalaksmi, R., Sufficient conditions for starlike functions of order α, JIPAM. J. Inequal. Pure Appl. Math., 3(2002), no. 5, Article 81, 6.

Robertson, M.I.S., On the theory of univalent functions, Ann. of Math., 37(1936), no. 2, 374–408.

Ruscheweyh, S., Sheil-Small, T., Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv., 48(1973), 119–135.

Shanmugam, T.N., Convolution and differential subordination, Internat. J. Math. Math. Sci., 12(1989), no. 2, 333–340.

Singh, S., Gupta, S., A differential subordination and starlikeness of analytic functions, Appl. Math. Lett., 19(2006), no. 7, 618–627.

Sokól, J., Stankiewicz, J., Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., (1996), no. 19, 101–105.

Downloads

Published

2023-03-20

How to Cite

SEBASTIAN, A., & RAVICHANDRAN, V. (2023). Radius of starlikeness through subordination. Studia Universitatis Babeș-Bolyai Mathematica, 68(1), 161–170. https://doi.org/10.24193/subbmath.2023.1.12

Issue

Section

Articles

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.