Monotonicity with respect to p of the best constants associated with Sobolev immersions of type W ₀¹,ᵖ (Ω) '→ Lq(Ω) when q ∈ {1, p, ∞}
DOI:
https://doi.org/10.24193/subbmath.2023.1.08Keywords:
p-Laplacian, p-torsional rigidity, distance function to the boundary.Abstract
The goal of this paper is to collect some known results on the mono-tonicity with respect to p of the best constants associated with Sobolev immersions.
Mathematics Subject Classification (2010): 35Q74, 47J05, 47J20, 49J40, 49S05.
Received 18 November 2022; Revised 24 January 2023. Published Online: 2023-03-20. Published Print: 2023-04-30
References
Benedikt, J., Drábek, P., Asymptotics for the principal eigenvalue of the p-Laplacian on the ball as p approaches 1, Nonlinear Anal., 93(2013), 23-29.
Bhattacharya, T., DiBenedetto, E., Manfredi, J.J., Limits as p → ∞ of ∆pup = f and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1991), 15–68.
Bobkov, V., Tanaka, M., On positive solutions for (p, q)-Laplace equations with two parameters, Calc. Var. Partial Differential Equations, 54(2015), 3277-3301.
Bocea, M., Mihăilescu, M., Minimization problems for inhomogeneous Rayleigh quotients, Communications in Contemporary Mathematics, 20(2018), 1750074, 13 pp.
Bocea, M., Mihăilescu, M., On the monotonicity of the principal frequency of the p-Laplacian, Adv. Calc. Var., 14(2021), 147–152.
Bocea, M., Mihăilescu, M., Stancu-Dumitru, D., The monotonicity of the principal frequency of the anisotropic p-Laplacian, Comptes Rendus Mathématique, 360(2022), 993-1000.
Brasco, L., On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrangement technique, ESAIM: Control, Optimisation and Calculus of Variations, 20(2014), 315–338.
Brasco, L., On principal frequencies and inradius of convex sets, Bruno Pini Mathematical Analysis Seminar, 9(2018), 78-101.
Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011, xiv+599 pp.
Briani, L., Buttazzo, G., Prinari, F., Inequalities between torsional rigidity and principal eigenvalue of the p-Laplacian, Calc. Var. Partial Differential Equations, 61(2022), no. 2, Paper No. 78, 25 pp.
Bueno, H., Ercole, G., Solutions of the Cheeger problem via torsion functions, J. Math. Anal. Appl., 381(2011), 263–279.
Bueno, H., Ercole, G., Macedo, S.S., Asymptotic behavior of the p-torsion functions as p goes to 1, Arch. Math., 107(2016), 63–72.
Della Pietra, F., Gavitone, N., Guarino Lo Bianco, S., On functionals involving the torsional rigidity related to some classes of nonlinear operators, J. Differential Equations, 265(2018), 6424-6442.
Enache, C., Mihăilescu, M., A Monotonicity Property of the p-Torsional Rigidity, Non-linear Analysis, 208(2021), Article 112326.
Enache, C., Mihăilescu, M., Stancu-Dumitru, D., The monotonicity of the p-torsional rigidity in convex domains, Mathematische Zeitschrift, 302(2022), 419-431.
Ercole, G., Pereira, G.A., Asymptotics for the best Sobolev constants and their extremal functions, Math. Nachr., 289(2016), 1433-1449.
Fărcășeanu, M., Mihăilescu, M., On the monotonicity of the best constant of Morrey’s inequality in convex domains, Proceedings of the American Mathematical Society, 150(2022), 651-660.
Fukagai, N., Ito, M., Narukawa, K., Limit as p → ∞ of p-Laplace eigenvalue problems and L∞-inequality of Poincaré type, Differential Integral Equations, 12(1999), 183-206.
Grecu, A., Mihăilescu, M., Monotonicity of the principal eigenvalue of the p-Laplacian on an annulus, Math. Reports, 23(2021), 149-155.
Hynd, R., Lindgren, E., Extremal functions for Morrey’s inequality in convex domains, Math. Ann., 375(2019), 1721-1743.
Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem, Arch. Rational Mech. Anal., 148(1999), 89-105.
Kajikiya, R., A priori estimate for the first eigenvalue of the p-Laplacian, Differential Integral Equations, 28(2015), 1011-1028.
Kajikiya, R., Tanaka M., Tanaka S., Bifurcation of positive solutions for the one-dimensional (p; q)-Laplace equation, Electron. J. Differential Equations, 107(2017), 1–37.
Kawohl, B., On a family of torsional creep problems, J. Reine Angew. Math., 410(1990), 1-22.
Lê, A., Eigenvalue problems for the p-Laplacian, Nonlinear Analysis, 64(2006), 1057-1099.
Lindqvist, P., On the equation div(|∇u| ᵖ−²∇u)+ λ|u| ᵖ−²u = 0, Proc. Amer. Math. Soc., 109(1990), 157-164.
Lindqvist, P., On non-linear Rayleigh quotients, Potential Anal., 2(1993), 199-218.
Lindqvist, P., Note on a nonlinear eigenvalue problem, Rocky Mountain J. Math., 23(1993), 281-288.
Lindqvist, P., A nonlinear eigenvalue problem, Ciatti, Paolo (ed.) et al., Topics in Mathematical Analysis, 175-203, Hackensack, NJ: World Scientific (ISBN 978-981-281-105- 9/hbk). Series on Analysis Applications and Computation 3, 2008).
Mihăilescu, M., Monotonicity properties for the variational Dirichlet eigenvalues of the p-Laplace operator, Journal of Differential Equations, 335(2022), 103-119.
Mihăilescu, M., Rossi, J.D., Monotonicity with respect to p of the first nontrivial eigenvalue of the p-Laplacian with homogeneous Neumann boundary conditions, Comm. Pure Appl. Anal., 19(2020), 4363–4371.
Payne, L.E., Philippin, G.A., Some applications of the maximum principle in the problem of torsional creep, SIAM J. Appl. Math., 33(1977), 446–455.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.