CSABA VARGA – In Memoriam

Authors

Keywords:

Csaba Varga, critical points, Finsler geometry.

Abstract

This note is devoted to present the scientific work of Professor Csaba Varga (1959-2021), who had contributions in Calculus of Variations and its applications in the theory of Partial Differential Equations and Finsler Geometry.

Mathematics Subject Classification (2010): 35A15, 35B38, 58J05, 58J60.

Author Biography

Alexandru KRISTÁLY, Babeș-Bolyai University, Cluj-Napoca, Romania e-mail: alexandru.kristaly@ubbcluj.ro

Babeș-Bolyai University, Department of Economics, 58-60, T. Mihali Street, Cluj-Napoca, Romania e-mail: alexandru.kristaly@ubbcluj.ro

References

Alves, C.O., Santos, J.A., Multivalued elliptic equation with exponential critical growth in R2, J. Differential Equations, 261(2016), no. 9, 4758–4788.

Alves, C.O., Duarte, R.C., Souto, M.A.S., A Berestycki-Lions type result and applications, Rev. Mat. Iberoam., 35(2019), no. 6, 1859–1884.

Ambrosetti, A., Rabinowitz, P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14(1973), 349–381.

Bao, D., Chern, S.-S., Shen, Z., Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, 2000.

Busemann, H., The Geometry of Geodesics, Academic Press, 1955.

Caponio, E., Javaloyes, M.A. Masiello, A., On the energy functional on Finsler mani-folds and applications to stationary spacetimes, Math. Ann., 351(2011), no. 2, 365–392.

Chang, K.-C., Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80(1981), no. 1, 102–129.

Clarke, F.H., Optimization and Nonsmooth Analysis, Wiley, 1983.

Costea, N., Krist´aly, A., Varga, Cs., Variational and Monotonicity Methods in Non- smooth Analysis, Springer International Publishing, 2021.

Costea, N., Moro¸sanu, Gh., Varga, Cs., Weak solvability for Dirichlet partial differential inclusions in Orlicz-Sobolev spaces, Adv. Differential Equations, 23(2018), no. 7-8, 523– 54.

Degiovanni, M., Marzocchi, M., A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl., 167(1994), 73–100.

Farkas, Cs., Krist´aly, A., Varga, Cs., Singular Poisson equations on Finsler-Hadamard manifolds, Calc. Var. Partial Differential Equations, 54(2015), no. 2, 1219–1241.

Frigon, M., On a critical point theory for multivalued functionals and application to partial differential inclusions, Nonlinear Anal., 31(1998), no. 5-6, 735–753.

Ivanov, S., Lytchak, A., Rigidity of Busemann convex Finsler metrics, Comment. Math. Helv., 94(2019), no. 4, 855–868.

Jabri, Y., The Mountain Pass Theorem. Variants, Generalizations and Some Appli- cations, Encyclopedia of Mathematics and its Applications, 95. Cambridge University Press, Cambridge, 2003.

Kelly, P., Straus, E., Curvature in Hilbert geometry, Pacific J. Math., 8(1958), 119–125. [17] Kozma, L., Krist´aly, A., Varga, Cs., The dispersing of geodesics in Berwald spaces of non-positive flag curvature, Houston J. Math., 30(2004), no. 2, 413–420.

Kozma, L., Krist´aly, A., Varga, Cs., Critical point theorems on Finsler manifolds, Beitra¨ge Algebra Geom., 45(2004), no. 1, 47–59.

Krist´aly, A., Kozma, L., Metric characterization of Berwald spaces of non-positive flag curvature, J. Geom. Phys., 56(2006), no. 8, 1257–1270.

Krist´aly, A., R˘adulescu, V., Varga, Cs., Variational Principles in Mathematical Physics, Geometry, and Economics, Volume 136 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2010. Qualitative Analysis of Nonlinear Equations and Unilateral Problems, With a foreword by Jean Mawhin.

Krist´aly, A., Varga, Cs., Cerami(C) condition and mountain pass theorem for multival- ued mappings, Serdica Math. J., 28(2002), no. 2, 95–108.

Krist´aly, A., Varga, Cs., A note on minimax results for continuous functionals, Studia Univ. Babe¸s-Bolyai Math., 43(1998), no. 3, 35–55.

Krist´aly, A., Varga, Cs., Varga, V., A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities, J. Math. Anal. Appl., 325(2007), no. 2, 975–986.

Lisei, H., Varga, Cs., Some applications to variational-hemivariational inequalities of the principle of symmetric criticality for Motreanu-Panagiotopoulos type functionals, J. Global Optim., 36(2006), no. 2, 283–305.

Mester, A´ ., Peter, I.R., Varga, Cs., Sufficient criteria for obtaining Hardy inequalities on Finsler manifolds, Mediterr. J. Math., 18(2021), no. 2, Paper No. 76, 22 pp.

Mihailescu, M., Stancu-Dumitru, D., Varga, Cs., The convergence of nonnegative solu- tions for the family of problems −∆pu = λeu as p→∞, ESAIM Control Optim. Calc. Var., 24(2018), no. 2, 569–578.

Motreanu, D., Varga, Cs., Some critical point results for locally Lipschitz functionals, Comm. Appl. Nonlinear Anal., 4(3)(1997), 17–33.

Pintea, C., Varga, Cs., A note on homology and homotopy groups of fiber spaces, Math- ematica, 39(62)(1)(1997), 95–101.

Precup, R., Pucci, P., Varga, Cs., Energy-based localization and multiplicity of radially symmetric states for the stationary p-Laplace diffusion, Complex Var. Elliptic Equ., 65(2020), no. 7, 1198–1209.

Varga, Cs., Crainic, M., A note on the denseness of complete invariant metrics, Publ. Math. Debrecen, 5(1997), 265–271.

Varga, Cs., Farcas, G., On completeness of metric spaces, Studia Univ. Babe¸s-Bolyai Math., 37(4)(1993), 95–101.

Varga, Cs., Farcas, G., Ljusternik-Schnirelman theory on closed subsets of C1-manifolds, Studia Univ. Babes-Bolyai Math., 38(2)(1993), 75–89.

Varga, Cs., Farcas, G., A multiplicity theorem in equivariant case, Mathematica, 38(61)(1-2)(1996), 221–226.

Downloads

Published

2023-03-20

How to Cite

KRISTÁLY, A. (2023). CSABA VARGA – In Memoriam. Studia Universitatis Babeș-Bolyai Mathematica, 68(1), 3–11. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/4918

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.