Analysis of quasistatic viscoelastic viscoplastic piezoelectric contact problem with friction and adhesion

Authors

  • Nadhir CHOUGUI Applied Mathematics Laboratory, Department of Mathematics, Faculty of Sciences, Ferhat Abbas - Setif1 University, Setif, 19000, Algeria, e-mail: nadhir.chougui@univ-setif.dz

DOI:

https://doi.org/10.24193/subbmath.2022.4.15

Keywords:

Viscoelastic, viscoplastic, piezoelectric, bilateral contact, non local Coulomb friction, adhesion, quasi-variational inequality, weak solution, fixed point.

Abstract

In this paper we study the process of bilateral contact with adhesion and friction between a piezoelectric body and an insulator obstacle, the so-called foundation. The material’s behavior is assumed to be electro-viscoelastic- viscoplastic; the process is quasistatic, the contact is modeled by a general non-local friction law with adhesion. The adhesion process is modeled by a bonding field on the contact surface. We derive a variational formulation for the problem and then, under a smallness assumption on the coefficient of friction, we prove the existence of a unique weak solution to the model. The proofs are based on a general results on elliptic variational inequalities and fixed point arguments.

Mathematics Subject Classification (2010): 74M10, 74M15, 74F05, 74R05, 74C10.

Received 13 December 2019; Accepted 17 January 2020.

References

Barboteu, M., Sofonea, M., Modeling and analysis of the unilateral contact of a piezoelectric body with a conductive support, J. Math. Anal. Appl., 358(2009), 110-124.

Batra, R.C., Yang J.S., Saint-Venant’s principle in linear piezoelectricity, Journal of Elasticity, 38(1995), 209-218.

Bisenga, P., Lebon, F., Maceri, F., The unilateral frictional contact of a piezoelectric body with a rigid support in Contact Mechanics, J.A.C. Martins and Manuel D.P. Monteiro Marques (Eds.), Kluwer, Dordrecht, 2002, 347-354.

Chau, O., Fern´andez, J.R., Shillor, M., Sofonea, M., Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion, J. Comput. Appl. Math., 159(2003), 431-465.

Chau, O., Motreanu, D., Sofonea, M., Quasistatic frictional problems for elastic and viscoelastic materials, Applications of Mathematics, 47(2002), no. 4, 341-360.

Chau, O., Shillor, M., Sofonea, M., Dynamic frictionless contact with adhesion, Journal of Applied Mathematics and Physics (ZAMP), 55(2004), 32-47.

Chougui, N., Drabla, S., A quasistatic electro-viscoelastic contact problem with adhesion, Bull. Malays. Math. Sci. Soc., 39(2016), 1439-1456.

Drabla, S., Zellagui, Z., Analysis of an electro-elastic contact problem with friction and adhesion, Stud. Univ. Babe¸s-Bolyai Math., 54(2009), no. 1, 75-99.

Drabla, S., Zellagui, Z., Variational analysis and the convergence of the finite element approximation of an electro-elastic contact problem with adhesion, Arab. J. Sci. Eng., 36(2011), 1501-1515.

Duvaut, G., Loi de frottement non locale, J. M´ec. Th´e. Appl., Special Issue, (1982), 73-78.

Fr´emond, M., Equilibre des structures qui adh`erent a` leur support, C.R. Acad. Sci. Paris, S´erie, II, 295(1982), 913-916.

Fr´emond, M., Adh´erence des solides, Jounal M´ecanique Th´eorique et Appliqu´ee, 6(1987), 383-407.

Hann, W., Sofonea, M., Kazmi, K., Analysis and numerical solution of firictionless contact problem for electro-elastic-visco-plastic materials, Comput. Methods Appl. Mech. Engrg., 196(2007), 3915-3926.

Ikeda, T., Fundamentals of Piezoelectricity, Oxford University Press, Oxford, 1990. [15] Jaruˇsek, J., Sofonea, M., On the solvability of dynamic elastic-visco-plastic contact problems with adhesion, Annals of the Academy of Romanian Scientists Series on Mathematics and its Applications, 1(2009), no. 2.

Ne˘cas, J., Hlva´˘cek, I., Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction, Elseiver, Amsterdam, 1981.

Sofonea, M., Han, W., Shillor, M., Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics, 276, Chapman-Hall/CRC Press, New York, 2006.

Toupin, R.A., A dynamical theory of elastic dielectrics, Int. J. Engrg. Sci., 1(1963), 101-126.

Touzaline, A., Analysis of vicoelastic unilateral and frictional contact problem with adhesion, Stud. Univ. Babe¸s-Bolyai Math., 58(2013), no. 2, 263-278.

Touzaline, A., Analysis of quasistatic contact problem with adhesion and nonlocal friction for viscoelastic materials, App. Math. Mech.-Eng. Ed., 31(5)(2010), 623-634.

Downloads

Published

2022-12-02

How to Cite

CHOUGUI, N. (2022). Analysis of quasistatic viscoelastic viscoplastic piezoelectric contact problem with friction and adhesion. Studia Universitatis Babeș-Bolyai Mathematica, 67(4), 871–889. https://doi.org/10.24193/subbmath.2022.4.15

Issue

Section

Articles

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.