Hybrid conjugate gradient-BFGS methods based on Wolfe line search

Authors

  • Khelladi SAMIA Laboratory of Fundamental and Numerical Mathematics LMFN, Faculty of Sciences, Setif-1 Ferhat Abbas University, 19000 Setif, Algeria, e-mail: samia.boukaroura@univ-setif.dz
  • Benterki DJAMEL Laboratory of Fundamental and Numerical Mathematics LMFN, Faculty of Sciences, Setif-1 Ferhat Abbas University, 19000 Setif, Algeria, e-mail: djbenterki@univ-setif.dz

DOI:

https://doi.org/10.24193/subbmath.2022.4.14

Keywords:

Unconstrained optimization, global convergence, conjugate gradient methods, quasi-Newton methods, Wolfe line search.

Abstract

In this paper, we present some hybrid methods for solving unconstrained optimization problems. These methods are defined using proper combinations of the search directions and included parameters in conjugate gradient and quasi-Newton method of Broyden–Fletcher–Goldfarb–Shanno (CG-BFGS). Their global convergence under the Wolfe line search is analyzed for general objective functions. Numerical experiments show the superiority of the modified hybrid (CG-BFGS) method with respect to some existing methods.

Mathematics Subject Classification (2010): 65K05, 90C26, 90C30.

Received 23 December 2019; Accepted 08 February 2020.

References

Baluch, B., Salleh, Z., Alhawarat, A., Roslan, U.A.M., A new modified three-term conjugate gradient method with sufficient descent property and its global convergence, J. Math. (2017), Article ID 2715854, 12 pp.

Byrd, R.H., Nocedal, J., A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal., 26(1989), no. 3, 727-739.

Dai, Y.H., Liao, L.Z., New conjugacy conditions and related nonlinear conjugate gradient methods, Appl. Math. Optim., 43(2001), no. 1, 87-101.

Dai, Y.H., Yuan, Y., A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10(1999), no. 1, 177-182.

Dai, Y.H., Yuan, Y., An efficient hybrid conjugate gradient method for unconstrained optimization, Ann. Oper. Res., 103(2001), 33-47.

Fletcher, R., Practical Methods of Optimization. Unconstrained Optimization, vol. 1, Wiley, New York, 1987.

Fletcher, R., Reeves, C.M., Function minimization by conjugate gradients, Comput. J., 7(1964), no. 2, 149-154.

Gilbert, J.C., Nocedal, J., Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim., 2(1992), no. 1, 21-42.

Hestenes, M.R., Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49(1952), no. 6, 409-436.

Ibrahim, M.A.H., Mamat, M., Leong, W.J., The hybrid BFGS-CG method in solving unconstrained optimization problems, Abstr. Appl. Anal. Hindawi Publishing Corporation. Article ID 507102, 6 pp.

Khanaiah, Z., Hmod, G., Novel hybrid algorithm in solving unconstrained optimizations problems, Int. J. Novel Res. Phys. Chem. Math., 4(2017), no. 3, 36-42.

Liu, Y., Storey, C., Efficient generalized conjugate gradient algorithms, part 1: theory, J. Optim. Theory Appl., 69(1991), no. 1, 129-137.

Polak, E., Ribiere, G., Note sur la convergence des m´ethodes de directions conjugu´ees, Rev. Fran¸caise d’Informatique et de Recherche Op´erationnelle 3(1969), no. R1, 35-43.

Polyak, B.T., The conjugate gradient method in extreme problems, Comput. Math. Phys., 9(1969), 94-112.

Stanimirovi´c, P.S., Ivanov, B., Djordjevi´c, S., Brajevi´c, I., New hybrid conjugate gradient and Broyden–Fletcher–Goldfarb–Shanno conjugate gradient methods, J. Optim. Theory Appl., 178(2018), no. 3, 860-884.

Touati-Ahmed, D., Storey, C., Efficient hybrid conjugate gradient techniques, J. Optim. Theory Appl., 64(1990), no. 2, 379-397.

Yang, X., Luo, Z., Dai, X., A global convergence of LS-CD hybrid conjugate gradient method, Adv. Numerical Anal, (2013), Hindawi Publishing Corporation, Article ID 517452, 5 pp.

Zhang, L., Nonlinear Conjugate Gradient Methods for Optimization Problems, Ph.D. Thesis, College of Mathematics and Econometrics, Hunan University, Changsha China, 2006.

Zhang, L., Zhou, W., Two descent hybrid conjugate gradient methods for optimization, J. Comput. Appl. Math., 216(2008), 251-264.

Zhang, L., Zhou, W.J., Li, D.H., Global convergence of a modified Fletcher–Reeves conjugate method with Armijo-type line search, J. Numer. Math., 104(2006), 561-572.

Zheng, Y., Zheng, B., Two new Dai-Liao-type conjugate gradient methods for unconstrained optimization problems, J. Optim. Theory Appl., 175(2017), 502-509.

Zoutendijk, G., Nonlinear Programming, Computational Methods, Abadie, J. (ed.), Integer and Nonlinear Programming, (1970), 37-86.

Downloads

Published

2022-12-02

How to Cite

SAMIA, K., & DJAMEL, B. (2022). Hybrid conjugate gradient-BFGS methods based on Wolfe line search. Studia Universitatis Babeș-Bolyai Mathematica, 67(4), 855–869. https://doi.org/10.24193/subbmath.2022.4.14

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.