Coefficient estimates for a subclass of analytic functions by Srivastava-Attiya operator
DOI:
https://doi.org/10.24193/subbmath.2022.4.06Keywords:
Analytic functions, bi-univalent functions, coefficient estimates, Srivastava-Attiya operator, subordination.Abstract
In this paper, we investigate bounds of the coefficients for subclass of analytic and bi-univalent functions. The results presented in this paper would generalize and improve some recent works and other authors.
Mathematics Subject Classification (2010): 30C45, 30C50.
Received 19 December 2019; Accepted 08 January 2020.
References
Adegani, E.A., Bulut, S., Zireh, A., Coefficient estimates for a subclass of analytic biunivalent functions, Bull. Korean Math. Soc., 55(2018), 405-413.
Adegani, E.A., Cho, N.E., Motamednezhad, A., Jafari, M., Bi-univalent functions associated with Wright hypergeometric functions, J. Comput. Anal. Appl., 28(2020), 261-271.
Ali, R.M., Lee, S.K., Ravichandran, V., Subramaniam, S., Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(2012), 344-351.
Aouf, M.K., El-Ashwah, R.M., Abd-Eltawab, A.M., New subclasses of biunivalent functions involving Dziok-Srivastava operator, ISRN Math. Anal., (2013), Art. ID 387178.
Brannan, D.A., Taha, T.S., On some classes of bi-univalent functions, Stud. Univ. Babe¸s-Bolyai Math., 31(1986), 70-77.
Bulut, S., Coefficient estimates for a new subclass of analytic and bi-univalent functions defined by Hadamard product, J. Complex Anal., (2014), Art. ID 302019.
C¸ a˘glar, M., Orhan, H., Ya˘gmur, N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27(2013), 1165-1171.
Deniz, E., Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2(2013), 49-60.
Duren, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
Frasin, B.A., Aouf, M.K., New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
Jafari, M., Bulboaca, T., Zireh, A., Adegani, E.A., Simple criteria for univalence and coefficient bounds for a certain subclass of analytic functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(2019), no. 1, 394-412.
Jung, I.B., Kim, Y.C., Srivastava, H.M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176(1993), 138-147.
Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
Motamednezhad, A., Bulboaca, T., Adegani, E. A., Dibagar, N., Second Hankel determinant for a subclass of analytic bi-univalent functions defined by subordination, Turk. J. Math., 42(2018), 2798-2808.
Murugusundaramoorthy, G., Bulboaca, T., Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions of complex order associated with the Hohlov operator, Ann. Univ. Paedagog. Crac. Stud. Math., 17 (2018), no. 1, 27-36.
Nehari, Z., Conformal Mapping, McGraw-Hill, New York, NY, USA, 1952.
Prajapat, J.K., Goyal, S.P., Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal., 3(2009), 129-137.
R˘aducanu, D., Srivastava, H.M., A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integr. Transf. Spec. funct., 18(2007), 933-943.
Reddy, G.L., Padmanaban, K.S., On analytic functions with reference to the Bernardi integral operator, Bull. Austral. Math. Soc., 25(1982), 387-396.
Selvaraj, C., Babu, O.S., Murugusundaramoorthy, G., Coefficient estimates of bi-Bazileviˇc functions of Sakaguchi type based on Srivastava-Attiya operator, FU Math. Inform., 29(2014), no. 1, 105-117.
Srivastava, H.M., Attiya, A., An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integr. Transf. Spec. funct., 18(2007), 207-216.
Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
Zireh, A., Adegani, E.A., Bidkham, M., Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasisubordinate, Math. Slovaca, 68(2018), 369-378.
Zireh, A., Adegani, E.A., Bulut, S., Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin, 23(2016), 487-504.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.