Majorization problems for certain starlike functions associated with the exponential function

Authors

DOI:

https://doi.org/10.24193/subbmath.2022.4.05

Keywords:

Univalent, starlike, exponential function, majorization, subordination, Bell numbers.

Abstract

Let S∗ and S∗ denote the class of analytic functions f in the open unit e B disc normalized by f (0) = 0 = f t(0) − 1 and satisfying, respectively, the following subordination relations: zf t(z) z f (z) ≺ e and zf t(z) f (z) ≺ e ez −1. In this article, we investigate majorization problems for the classes S∗ and S∗ e B without acting upon any linear or nonlinear operators.

Mathematics Subject Classification (2010): 30C45.

Received 22 September 2019; Accepted 04 February 2020.

References

Altintaș, O., Özkan, Ö., Srivastava, H.M., Majorization by starlike functions of complex order, Complex Variables Theory Appl., 46(2001), no. 3, 207-218.

Altintaș, O., Srivastava, H.M., Some majorization problems associated with p-valently starlike and convex functions of complex order, East Asian Math. J., 17(2001), no. 2, 207-218.

Bell, E.T., Exponential polynomials, Ann. Math., 35(1934), 258-277.

Bell, E.T., The iterated exponential integers, Ann. Math., 39(1938), 539-557.

Carath´eodory, C., Theory of Functions, Vol. 2, New York, 1954.

Cho, N.E., Kumar, S., Kumar, V., Ravichandran, V., Srivastava, H.M., Starlike functions related to the Bell numbers, Symmetry, 11(2019), no. 2, 219.

Duren, P.L., Univalent Functions, Springer-Verlag, New York, 1983.

Janowski, W., Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23(1970), no. 2, 159-177.

Kargar, R., Ebadian A., Sokół, J., Radius problems for some subclasses of analytic functions, Complex Anal. Oper. Theory, 11(2017), no. 7, 1639-1649.

Kargar, R., Ebadian A., Sokół, J., On Booth lemiscate and starlike functions, Anal. Math. Phys., 9(2019), no. 1, 143-154.

Kargar, R., Sokół, J., Mahzoon, H., On a certain subclass of strongly starlike functions, arXiv:1811.01271 [math.CV]

Kumar, V., Cho, N.E., Ravichandran, V., Srivastava, H.M., Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca, 69(2019), no. 5, 1053-1064.

Kuroki, K., Owa, S., Notes on new class for certain analytic functions, RIMS Kokyuroku Kyoto Univ., 1772(2011), 21-25.

Ma, M., Minda, D., Uniformly convex functions, Ann. Polon. Math., 57(1992), no. 2, 165-175.

Ma, M., Minda, D., A unified treatment of some special classes of univalent functions, In Proceedings of the Conference On Complex Analysis, Tianjin, China, 19-23 June 1992, 157-169.

MacGregor, T.H., Majorization by univalent functions, Duke Math. J., 34(1967), no. 1, 95-102.

Mendiratta, R., Nagpal. S., Ravichandran, V., On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38(2015), no. 1, 365- 386.

Nehari, Z., Conformal Mapping, McGraw–Hill, New York, NY, USA, 1952.

Raina, R.K., Sokół, J., Some properties related to a certain class of starlike functions, C.R. Math. Acad. Sci. Paris, 353(2015), no. 11, 973-978.

Sharma, K., Jain, N.K., Ravichandran, V., Starlike functions associated with a cardioid, Afr. Mat., 27(2016), no. 5-6, 923-939.

Sokół, J., A certain class of starlike functions, Comput. Math. Appl., 62(2011), no. 2, 611-619.

Tang, H., Aouf, M.K., Deng, G.-T., Majorization problems for certain subclasses of meromorphic multivalent functions associated with the Liu-Srivastava operator, Filomat, 29(2015), no. 4, 763-772.

T Tang, H., Deng, G.-T., Majorization problems for two subclasses of analytic functions connected with the Liu-Owa integral operator and exponential function, J. Inequal. Appl., 2018, no. 1, (2018), 1-11.

Tang, H., Li, S.-H., Deng, G.-T., Majorization properties for a new subclass of θ-spiral functions of order γ, Math. Slovaca, 64(2014), no. 1, 39-50.

Tang, H., Srivastava, H.M., Li, Sh., Deng, G.-T., Majorization results for subclasses of starlike functions based on the sine and cosine functions, Bull. Iran. Math. Soc. (2019). https://doi.org/10.1007/s41980-019-00262-y

Downloads

Published

2022-12-02

How to Cite

MAHZOON, H. (2022). Majorization problems for certain starlike functions associated with the exponential function. Studia Universitatis Babeș-Bolyai Mathematica, 67(4), 731–738. https://doi.org/10.24193/subbmath.2022.4.05

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.