Some remarks on linear set-valued differential equations
DOI:
https://doi.org/10.24193/subbmath.2020.3.09Keywords:
Linear differential equation, set-valued mapping, Hukuhara difference, derivative.Abstract
The article discusses various definitions of the derivative of a set-valued mapping and their properties. Also, a linear set-valued differential equation is considered and the existence of solutions for this equation with Hukuhara derivative, Plotnikov-Skripnik derivative and Bede-Gal derivative is investigated.
Mathematics Subject Classification (2010): 34A60, 34A07, 49J53, 54C60.
References
Amrahov, S¸.E., Khastan, A., Gasilov, N., Fatullayev, A.G., Relationship between Bede- Gal differentiable set-valued functions and their associated support functions, Fuzzy Sets Syst., 265(2016), 57-72.
Banks, H.T., Jacobs, M.Q., A differential calculus for multifunctions, J. Math. Anal. Appl., 29(1970), 246-272.
Bede, B., Gal, S.G., Almost periodic fuzzy-number-valued functions, Fuzzy Sets Syst.,147(2004), 385-403.
Bede, B., Gal, S.G., Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation, Fuzzy Sets Syst., 151 (2005), 581- 599.
de Blasi, F.S., Iervolino, F., Equazioni differentiali con soluzioni a valore compatto convesso, Boll. Unione Mat. Ital., 2(4-5)(1969), 491-501.
de Blasi, F.S., Lakshmikantham, V., Bhaskar, T.G., An existence theorem for set differential inclusions in a semilinear metric space, Control Cybernet., 36(3)(2007), 571-582.
Boltyanski,V.G., Jer´onimo Castro, J., Centrally symmetric convex sets, J. Convex Anal., 14(2)(2007), 345-351.
Bridgland, T.F., Trajectory integrals of set valued functions, Pac. J. Math., 33(1)(1970), 43-68.
Chalco-Cano, Y., Roman-Flores, H., Jimenez-Gamero, M.D., Generalized derivative and π-derivative for set-valued functions, Inform. Sci., 181(11)(2011), 2177-2188.
Gomes, L.T., Barros, L., Bede, B., Fuzzy Differential Equations in Various Approaches, Springer Briefs in Mathematics, Springer, 2015.
Hukuhara, M., Integration des applications mesurables dont la valeur est un compact convexe, Funkc. Ekvacioj, Ser. Int., 10(1967), 205-223.
Komleva, T.A., Plotnikov, A.V., Differential inclusions with the Hukuhara derivative, Nonlinear Oscil., 10(2)(2007), 229-245.
Komleva, T.A., Plotnikova, L.I., Plotnikov, A.V., Partial averaging of discrete-time set- valued systems, Stud. Univ. Babe¸s-Bolyai Math., 63(2018), no. 4, 539-548.
Komleva, T.A., Plotnikova, L.I., Plotnikov, A.V., A multivalued discrete system and its properties, Ukr. Math. J., 70(11)(2019), 1750-1757.
Komleva, T.A., Plotnikov, A.V., Skripnik, N.V., Differential equations with set-valued solutions, Ukr. Math. J., 60(10)(2008), 1540-1556.
Lakshmikantham, V., Granna Bhaskar, T., Vasundhara Devi, J., Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, Cambridge, 2006.
Lakshmikantham, V., Mohapatra, R.N., Theory of Fuzzy Differential Equations and Inclusions, Taylor & Francis, London, 2003.
Lasota, A., Strauss, A., Asymptotic behavior for differential equations which cannot be locally linearized, J. Differ. Equations, 10(1971), 152-172.
Malinowski, M.T., Second type Hukuhara differentiable solutions to the delay set-valued differential equations, Appl. Math. Comput., 218(2012), 9427-9437.
Malinowski, M.T., On set differential equations in Banach spaces - a second type Hukuhara differentiability approach, Appl. Math. Comput., 219(2012), 289-305.
Martelli, M., Vignoli, A., On differentiability of multi-valued maps, Boll. Unione Mat. Ital., 10(1974), 701-712.
Perestyuk, N.A., Plotnikov, V.A., Samoilenko, A.M., Skripnik, N.V., Differential equations with impulse effects: multivalued right-hand sides with discontinuities, de Gruyter Stud. Math. 40, Berlin/Boston, Walter De Gruyter GmbH& Co, 2011.
Perestyuk, N.A., Skripnik, N.V., Averaging of set-valued impulsive systems, Ukr. Math. J., 65(2013), no. 1, 140-157.
Perestyuk, N.A., Skripnik, N.V., Averaging of fuzzy systems, Ukr. Math. J., 70(2018), no. 3, 477-494.
Petersen, I.R., Savkin, A.V., Robust Kalman Filtering for Signals and Systems with Large Uncertainties, Control Engineering, Birkha¨user, Boston, MA, 1999.
Plotnikov, A.V., Averaging differential embeddings with Hukuhara derivative, Ukr. Math. J., 41(1989), no. 1, 112-115.
Plotnikov, A.V., Controlled quasidifferential equations and some of their properties, Differ. Equ., 34(10)(1998), 1332-1336.
Plotnikov, A.V., Differentiation of multivalued mappings. T-derivative, Ukr. Math. J., 52(8)(2000), 1282-1291.
Plotnikov, A.V., Komleva, T.A., Molchanyuk, I.V., Existence and uniqueness theorem for set-valued Volterra-Hammerstein integral equations, Asian-European J. Math., 10(3)(2018), 12 pages.
Plotnikov, V.A., Plotnikov, A.V., Vityuk, A.N., Differential Equations with a Multivalued Right-Hand side. Asymptotic Methods, AstroPrint, Odessa, 1999.
Plotnikov, A.V., Skripnik, N.V., Differential Equations with ”Clear” and Fuzzy Multivalued Right-Hand Side. Asymptotics Methods, AstroPrint, Odessa, 2009.
Plotnikov, A.V., Skripnik, N.V., Set-Valued differential equations with generalized derivative, J. Adv. Res. Pure Math., 3(1)(2011), 144-160.
Plotnikov, A., Skripnik, N., Existence and uniqueness theorems for generalized set differential equations, Int. J. Control Sc. Eng., 2(1)(2012), 1-6.
Plotnikov, A.V., Skripnik, N.V., An existence and uniqueness theorem to the Cauchy problem for generalised set differential equations, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., 20(4)(2013), 433-445.
Plotnikov, A.V., Skripnik, N.V., Conditions for the existence of local solutions of setvalued differential equations with generalized derivative, Ukr. Math. J., 65(10)(2014), 1498-1513.
Plotnikov, A.V., Skripnik, N.V., Existence and uniqueness theorem for set integral equations, J. Adv. Res. Dyn. Control Syst., 5(2)(2013), 65-72.
Plotnikova, N.V., Systems of linear differential equations with p-derivative and linear differential inclusions, Sb. Math., 196(2005), 16771691.
Plotnikova, N.V., Approximation of a bundle of solutions of linear differential inclusions, Nonlinear Oscill., 9(3)(2006), 375-390.
Polovinkin, E.S., Multivalued Analysis and Differential Inclusions, FIZMATLIT, Moscow, 2014.
Radstro¨m, H., An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 3(1952), 165-169.
Skripnik, N.V., Averaging of impulsive differential inclusions with Hukuhara derivative, Nonlinear Oscil., 10(3)(2007), 422-438.
Skripnik, N.V., Three-step averaging scheme for set-valued differential equations with generalized derivative, J. Math. Sci., 236(3)(2019), 333-342.
Stefanini, L., Bede, B., Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 71(2009), 13111328.
Tolstonogov, A., Differential Inclusions in a Banach Space, Kluwer Academic Publishers, Dordrecht, 2000.
Tyurin, Yu.N., Mathematical statement of the simplified model of industrial planning, Econ. Math. Meth., 3(1965), 391-409.
Vu, H., Dong, L.S., Initial value problem for second-order random fuzzy differential equations, Adv. Difference Equ., 2015:373 (2015), 23 pages.
Vu, H., Van Hoa, N., On impulsive fuzzy functional differential equations, Iran. J. Fuzzy Syst., 13(4)(2016), 79-94.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.