Ulam stability of Volterra integral equation on a generalized metric space

Authors

  • Sorina Anamaria CIPLEA Technical University of Cluj-Napoca Department of Management and Technology 28 Memorandumului Street, 400114 Cluj-Napoca, Romania, e-mail: sorina.ciplea@ccm.utcluj.ro
  • Nicolaie LUNGU Technical University of Cluj-Napoca Department of Mathematics 28 Memorandumului Street 400114 Cluj-Napoca, Romania, e-mail: nlungu@math.utcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2020.2.11

Keywords:

Volterra integral equations, Ulam-Hyers stability, generalized metric space, Krasnoselski-Krein conditions, Naguno-Perron-Van Kampen conditions.

Abstract

The aim of this paper is to give some Ulam-Hyers stability results for Volterra integral equations on a generalized metric space. In this case we consider the Volterra integral equation in the Krasnoselski-Krein and Naguno-Perron-Van Kampen conditions. Here we present only Ulam-Hyers stability for the Volterra integral equation.

Mathematics Subject Classification (2010): 45G10, 45M10, 47H10, 47J20.

References

Castro, L.P., Ramos, A., Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations, Banach J. Math. Anal., 3(2009), no. 1, 36-43.

C˘adariu, L., Radu, V., The fixed points method for the stability of some functional equations, Carpathian J. Math., 23(2007), no. 1-2, 63-72.

Jung, S.M., A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory and Applications, 2007, Art. ID57064, 9 pages.

Krasnoselski, M.A., Krein, S.G., Ob odnom classe theorem edinstvenosti dlia uravnenia yl = f (x, y), Uspehi Math. Nauk, 1(67), 11(1956), 209-213.

Lungu, N., Hyperbolic-type inequalities on generalized metric spaces, Carpathian J. Math., 24(2008), no. 3, 341-347.

Luxemburg, W.A.J., On the convergence of successive approximations in the theory of ordinary differential equations II, Indag. Math., 20(1958), 540-546.

Rus, A.I., Principii ¸si aplica¸tii ale teoriei punctului fix, Ed. Dacia, Cluj-Napoca, 1979. [8] Rus, A.I., Ulam stability of ordinary differential equations, Stud. Univ. Babe¸s-Bolyai Math., 54(2009), no. 4, 125-133.

Rus, A.I., Gronwall lemma approach to the Hyers-Ulam-Rassias stability of an integral equation, in: Nonlinear Analysis and Variational Problems, Springer, 2009, 147-152.

Rus, A.I., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2009), no. 2, 305-320.

Rus, A.I., Lungu, N., Ulam stability of a nonlinear hyperbolic partial differential equation, Carpathian J. Math., 24(2008), no. 3, 403-408.

Wong, I.S.W., On the convergence of successive approximations in the Darboux problem, Ann. Polon. Math., 18(1966), 329-336.

Downloads

Published

2020-06-05

How to Cite

CIPLEA, S. A., & LUNGU, N. (2020). Ulam stability of Volterra integral equation on a generalized metric space. Studia Universitatis Babeș-Bolyai Mathematica, 65(2), 303–308. https://doi.org/10.24193/subbmath.2020.2.11

Issue

Section

Articles

Similar Articles

<< < 24 25 26 27 28 29 30 31 32 33 > >> 

You may also start an advanced similarity search for this article.