Modifying an approximation process using non-Newtonian calculus

Authors

  • Octavian AGRATINI Babe¸s-Bolyai University, Faculty of Mathematics and Computer Science Str. Kog˘alniceanu, 1, 400084 Cluj-Napoca, Romania And Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy Str. Fˆantˆanele, 57, 400320 Cluj-Napoca, Romania, e-mail: agratini@math.ubbcluj.ro https://orcid.org/0000-0002-2406-4274
  • Harun KARSLI Bolu Abant Izzet Baysal University Faculty of Science and Arts Department of Mathematics 14030 Golkoy Bolu, Turkey, e-mail: karsli h@ibu.edu.tr https://orcid.org/0000-0002-3641-9052

DOI:

https://doi.org/10.24193/subbmath.2020.2.10

Keywords:

Linear positive operator, non-Newtonian calculus, modulus of multiplicative smoothness.

Abstract

In the present note we modify a linear positive Markov process of discrete type by using so called multiplicative calculus. In this framework, a convergence property and the error of approximation are established. In the final part some numerical examples are delivered.

Mathematics Subject Classification (2010): 41A36, 47S30.

References

Bashirov, A.E., Kurpinar, E.M., O¨ zyapici, A., Multiplicative calculus and its applications, J. Math. Anal. Appl., 337(2008), 36-48.

Cai, Q.-Bo, Zhou, G., Li, J., Statistical approximation properties of λ-Bernstein operators based on q-integers, Open Math., 17(2019), no. 1, 487-498.

C˘atina¸s, T., Some classes of surfaces generated by Nielson and Marshall type operators on the triangle with one curved side, Stud. Univ. Babe¸s-Bolyai Math., 61(2016), no. 3, 305-314.

Filip, D.A., Piatecki, C., A non-newtonian examination of the theory of exogenous economic growth, Mathematica Aeterna, 4(2014), no. 2, 101-117.

Grossman, M., Katz, R., Non-Newtonian Calculus, Lee Press, Pigeon Cove, MA, 1972. [6] Gupta, V., Agrawal, G., Approximation for link Ismail-May operators, Ann. Funct. Anal., https://doi.org/10.1007/s43034-019-00051-y, online: 13 January 2020.

Mursaleen, M., Rahman, S., Ansari, K.J., Approximation by Jakimovski-Leviatan- Stancu-Durrmeyer type operators, Filomat, 33(2019), no. 6, 1517-1530.

Stanley, D., A multiplicative calculus, Primus: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 9(1999), no. 4, 310-326.

Downloads

Published

2020-06-05

How to Cite

AGRATINI, O., & KARSLI, H. (2020). Modifying an approximation process using non-Newtonian calculus. Studia Universitatis Babeș-Bolyai Mathematica, 65(2), 291–301. https://doi.org/10.24193/subbmath.2020.2.10

Issue

Section

Articles

Similar Articles

<< < 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.