Existence and multiplicity of solutions to the Navier boundary value problem for a class of (p(x), q(x))-biharmonic systems
DOI:
https://doi.org/10.24193/subbmath.2020.2.05Keywords:
Fourth-order, variable exponent, Palais Smale condition, mountain pass theorem.Abstract
In this article, we study the following problem with Navier boundary conditions. ∆(a(x, ∆u)) = Fu(x, u, v), in Ω ∆(a(x, ∆v)) = Fv (x, u, v), in Ω, u = v = ∆u = ∆v = 0 on ∂Ω. By using the Mountain Pass Theorem and the Fountain Theorem, we establish the existence of weak solutions of this problem.
Mathematics Subject Classification (2010): 35J30, 35J60, 35J92.
References
Ayoujil, A., El Amrouss, A., Continuous spectrum of a fourth order nonhomogeneous elliptic equation with variable exponent, Electron. J. Differ. Equ., Vol. 2011(2011), 1-24.
El Amrouss, A., Moradi, F., Moussaoui, M., Existence of solutions for fourth-order PDEs with variable exponents, Electron. J. Differ. Equ., 2009(2009), no. 153, 1-13.
El Amrouss, A., Ourraoui, A., Existence of solutions for a boundary problem involving p(x)−biharmonic operator, Bol. Soc. Parana. Mat., 31(2013), no. 1, 179-192.
El Hamidi, A., Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl., 300(2004), 30-42.
Fan, X.L., Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl., 312(2005), 464-477.
Fan, X.L., Fan, X., A Knobloch-type result for p(t) Laplacian systems, J. Math. Anal. Appl., 282(2003), 453-464.
Fan, X.L., Han, X.Y., Existence and multiplicity of solutions for p(x)-Laplacian equations in RN , Nonlinear Anal., 59(2004), 173-188.
Fan, X.L., Zhang, Q.H., Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal., 52(2003), 1843-1852.
Fan, X.L., Zhao, D., On the spaces Lp1 (x) and Wm,p1 (x), J. Math. Anal. Appl., 263(2001), 424-446.
Ferrero, A., Warnault, G., On a solutions of second and fourth order elliptic with power type nonlinearities, Nonlinear Anal., 70(2009), 2889-2902.
Li, L., Tang, C. L., Existence and multiplicity of solutions for a class of p(x)-biharmonic equations, Acta Math. Sci. Ser. B., 33(2013), 155-170.
Mashiyev, R.A., Cekic, B., Avci, M., Yu¨cedag, Z., Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition, Complex Var. Elliptic Equ., 57(2012), no. 5, 579-595.
Miha˘ilescu, M., Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal., 67(2007), 1419-1425.
Ourraoui, A., On −→p (x)−anisotropic problems with Neumann boundary conditions, Int. J. Differ. Equ, vol. 2015, Art. ID 238261, 7 pages, https://doi.org/10.1155/2015/238261.
Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math 1748, Springer-Verlag, Berlin, 2000.
Willem, M., M inimax theorems, Birkha¨user, Boston, 1996.
Yucedag, Z., Existence and multiplicity of solutions for p(x)−Kirchhoff-type problem, An. Univ. Craiova Ser. Mat. Inform., 44(2017), no. 1, 21-29.
Zang, A., Fu, Y. Interpolation inequalities for derivatives in variable exponent Lebesgue- Sobolev spaces, Nonlinear Anal., 69(2008), 3629-3636.
Zhao, J.F., S tructure Theory of Banach Spaces, (Chinese), Wuhan Univ. Press, Wuhan, 1991.
Zhikov, V.V., Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 9(1987), 33-66.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.