Coefficient estimates for a subclass of meromorphic bi-univalent functions defined by subordination
DOI:
https://doi.org/10.24193/subbmath.2020.1.05Keywords:
Coefficient estimates, Faber polynomial expansion, meromorphic functions, subordinate.Abstract
In this work, we use the Faber polynomial expansion by a new method to find upper bounds for |bn| coefficients for meromorphic bi-univalent functions class Σ/ which is defined by subordination. Further, we generalize and improve some of the previously published results.
Mathematics Subject Classification (2010): 30C45, 30C50.
References
Airault, H., Remarks on Faber polynomials, Int. Math. Forum, 3(2008), 449-456.
Airault, H., Bouali A, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130(2006), 179-222.
Airault, H., Ren, J., An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., 126(2002), 343-367.
Ali, R.M., Lee, S.K., Ravichandran, V., Subramaniam, S., Coefficient estimates for bi- univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(2012), 344-351.
Ali, M.F., Vasudevarao, A., On coefficient estimates of negative powers and inverse coefficients for certain starlike functions, Proc. Math. Sci., 127(2017), 449-462.
Bouali, A., Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions, Bull. Sci. Math., 130(2006), 49-70.
Bulboaca˘, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
Duren, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
Faber, G., U¨ber polynomische Entwickelungen, Math. Ann., 57(1903), 389-408.
Frasin, B.A., Aouf, M.K., New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
Halim, S.A., Hamidi, S.G., Ravichandran, V., Coefficient estimates for meromorphic bi-univalent functions, arXiv:1108.4089v1 [math.CV](2011).
Hamidi, S.G., Halim, S.A., Jahangiri, J.M., Coefficient estimates for a class of meromorphic bi-univalent functions, C.R. Math. Acad. Sci. Paris, 351(2013), 349-352.
Hamidi, S.G., Halim, S.A., Jahangiri, J.M., Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci., 2013(2013), Art. ID 498159, 4p.
Hamidi, S.G., Jahangiri, J.M., Faber polynomial coefficients of bi-subordinate functions, C.R. Math. Acad. Sci. Paris, 354(2016), 365-370.
Hamidi, S.G., Janani, T., Murugusundaramoorthy, G., Jahangiri, J.M., Coefficient estimates for certain classes of meromorphic bi-univalent functions, C.R. Math. Acad. Sci. Paris, 352(2014), 277-282.
Jahangiri, J.M., Hamidi, S.G., Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., 2013(2013), Art. ID 190560, 4p.
Jahangiri, J.M., Hamidi, S.G., Halim, S.A., Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Sci. Soc., 37(2014), 633-640.
Kapoor, G.P., Mishra, A.K., Coeffcient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl., 329(2007), 922-934.
Kubota, Y., Coeffcients of meromorphic univalent functions, Kodai Math. Sem. Rep., 28(1976/77), 253-261.
Ma, W., Minda, D., A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Lang and S. Zhang (eds), Int. Press, 1994, 157-169.
Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math., vol. 255, Marcel Dekker, Inc., New York, 2000.
Panigrahi, T., Coefficient bounds for certain subclasses of meromorphic and bi-univalent functions, Bull. Korean Math. Soc., 50(2013), 1531-1538.
Robertson, M.I.S., On the theory of univalent functions, Ann. of Math., 37(1936), 374- 408.
Schiffer, M., Sur un probl´eme dextr´emum de la repr´e sentation conforme, Bull. Soc. Math. France, 66(1938), 48-55.
Schober, G., Coeffcients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc., 67(1977), 111-116.
Springer, G., The coeffcient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc., 70(1951), 421-450.
Zireh, A., Analouei Adegani, E., Bidkham, B., Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate, Math. Slovaca, 68(2018), 369-378.
Zireh, A., Analouei Adegani, E., Bulut, S., Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin, 23(2016), 487-504.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.