Choquet integral analytic inequalities

Authors

DOI:

https://doi.org/10.24193/subbmath.2020.1.02

Keywords:

Choquet integral, distorted Lebesgue measure, analytic inequalities, fractional inequalities, monotonicity and convexity.

Abstract

Based on an amazing result of Sugeno [15], we are able to transfer classic analytic integral inequalities to Choquet integral setting. We give Choquet integral inequalities of the following types: fractional-Polya, Ostrowski, fractional Ostrowski, Hermite-Hadamard, Simpson and Iyengar. We provide several examples for the involved distorted Lebesgue measure.

Mathematics Subject Classification (2010): 26A33, 26D10, 26D15, 28A25.

References

Anastassiou, G.A., Fractional Differentiation Inequalities, Springer, Heidelberg, New York, 2009.

Anastassiou, G.A., On right fractional calculus, Chaos, Solitons and Fractals, 42(2009), 365-376.

Anastassiou, G.A., Advances on Fractional Inequalities, Springer, Heidelberg, New York, 2011.

Anastassiou, G.A., Intelligent Comparisons: Analytic Inequalities, Springer, Heidelberg, New York, 2016.

Canavati, J.A., The Riemann-Liouville integral, Nieuw Archief Voor Wiskunde, 5(1987), no. 1, 53-75.

Choquet, G., Theory of capacities, Ann. Inst. Fourier (Grenoble), 5(1953), 131-295.

Denneberg, D., Non-additive Measure and Integral, Kluwer Academic Publishers, Boston, 1994.

Diethelm, K., The Analysis of Fractional Differentiation Equations, Springer, Heidelberg, New York, 2010.

Frederico, G.S., Torres, D.F.M., Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem, International Mathematical Forum, 3(2008), no. 10, 479-493.

Iyengar, K.S.K., Note on an inequality, Math. Student, 6(1938), 75-76.

Ostrowski, A., U¨ber die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv., 10(1938), 226-227.

Polya, G., Ein mittelwertsatz fu¨r Funktionen mehrerer Ver¨anderlichen, Tohoku Math. J., 19(1921), 1-3.

Polya, G., Szego¨, G., Aufgaben und Lehrs¨atze aus der Analysis, (German), Vol. I, Springer-Verlag, Berlin, 1925.

Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives, Theory and Applications, (Gordon and Breach, Amsterdam, 1993) [English translation from the Russian, Integrals and Derivatives of Fractional Order and Some of Their Applications (Nauka i Tekhnika, Minsk, 1987)].

Sugeno, M., A note on derivatives of functions with respect to fuzzy measures, Fuzzy Sets Syst., 222(2013), 1-17.

Downloads

Published

2020-03-06

How to Cite

ANASTASSIOU, G. A. (2020). Choquet integral analytic inequalities. Studia Universitatis Babeș-Bolyai Mathematica, 65(1), 17–28. https://doi.org/10.24193/subbmath.2020.1.02

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.