Ascent, descent and additive preserving problems

Authors

  • Mourad OUDGHIRI Universit´e Mohammed Premier D´epartement Math, Labo LAGA, Facult´e des Sciences d’Oujda 60000 Oujda, Maroc, e-mail: morad.oudghiri@gmail.com https://orcid.org/0000-0003-2091-8516
  • Khalid SOUILAH Universit´e Mohammed Premier D´epartement Math, Labo LAGA, Facult´e des Sciences d’Oujda 60000 Oujda, Maroc, e-mail: s.khalide@gmail.com

DOI:

https://doi.org/10.24193/subbmath.2019.4.10

Keywords:

Linear preserver problems, ascent, descent, semi-Fredholm operators.

Abstract

Given an integer n ≥ 1, we provide a complete description of all additive surjective maps, on the algebra of all bounded linear operators acting on a complex separable infinite-dimensional Hilbert space, preserving in both directions the set of all bounded linear operators with ascent (resp. descent) non-greater than n. In the context of Banach spaces, we consider the additive preserving problem for semi-Fredholm operators with ascent or descent non-greater than n.

Mathematics Subject Classification (2010): 47B49, 47L99, 47A55, 47B37.

References

Aupetit, B., Spectrum-preserving linear mappings between Banach algebras or Jordan- Banach algebras, J. London Math. Soc., 62(2000), 917-924.

Aupetit, B., A Primer on Spectral Theory, Springer-Verlag, New York, 1991.

Bel Hadj Fredj, O., Burgos, M., Oudghiri, M., Ascent and essential ascent spectrum, Studia Math., 187(2008), 59-73.

Burgos, M., Kaidi, A., Mbekhta, M., Oudghiri, M., The descent spectrum and perturbations, J. Operator Theory, 56(2006), 259-271.

Grabiner, S., Zem´anek, J., Ascent, descent, and ergodic properties of linear operators, J. Operator Theory, 48(2002), 69-81.

Hou, J., Cui, J., Additive maps on standard operator algebras preserving invertibilities or zero divisors, Linear Algebra Appl., 359(2003), 219-233.

Jafarian, A.A., Sourour, A.R., Spectrum-preserving linear maps, J. Funct. Anal., 66(1986), 255-261.

Kaplansky, I., Algebraic and Analytic Aspects of Operator Algebras, Amer. Math. Soc. Providence, RI, 1970.

Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities, Pan´stwowe Wydawnictwo Naukowe, Warszawa, 1985.

Marcus, M., Purves, R., Linear transformations on algebras of matrices: The invariance of the elementary symmetric functions, Canad. J. Math., 11(1959), 383-396.

Mbekhta, M., Mu¨ller, V., Oudghiri, M., Additive preservers of the ascent, descent and related subsets, J. Operator Theory, 71(2014), 63-83.

Mbekhta, M., Mu¨ller, V., Oudghiri, M., On additive preservers of semi-Browder operators, Rev. Roumaine Math. Pures Appl., 59(2014), 237-244.

Mbekhta, M., Oudghiri, M., On additive maps preserving certain semi-Fredholm subsets, Linear Multilinear Algebra, 61(2012), 1010-1016.

Mbekhta, M., Sˇemrl, P., Linear maps preserving semi-Fredholm operators and generalized invertibility, Linear Multilinear Algebra, 57(2009), 55-64.

Mu¨ller, V., Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Second edition, Operator Theory: Advances and Applications, 139, Birkha¨user Verlag, Basel, 2007.

Omladiˇc, M., Sˇemrl, P., Additive mappings preserving operators of rank one, Linear Algebra Appl., 182(1993), 239-256.

Oudghiri, M., Souilah, K., Additive preservers of Drazin invertible operators with bounded index, Acta Math. Sin. (Engl. Ser.), 33(2017), 1225-1241.

Taylor, A.E., Theorems on Ascent, Descent, Nullity and Defect of Linear Operators, Math. Ann., 163(1966), 18-49.

Taylor, A.E., Lay, D.C., Introduction to Functional Analysis, Wiley, New York- Chichester-Brisbane, 1980.

Downloads

Published

2019-12-30

How to Cite

OUDGHIRI, M., & SOUILAH, K. (2019). Ascent, descent and additive preserving problems. Studia Universitatis Babeș-Bolyai Mathematica, 64(4), 565–580. https://doi.org/10.24193/subbmath.2019.4.10

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.