Λ²-statistical convergence and its application to Korovkin second theorem
DOI:
https://doi.org/10.24193/subbmath.2019.4.08Keywords:
Λ²−weighted statistical convergence, Korovkin type theorem, rate of convergence.Abstract
In this paper, we use the notion of strong (N, λ²)−summability to generalize the concept of statistical convergence. We call this new method a λ²−statistical convergence and denote by S λ₂ the set of sequences which are λ²−statistically convergent. We find its relation to statistical convergence and strong (N, λ²)−summability. We will define a new sequence space and will show that it is Banach space. Also we will prove the second Korovkin type approximation theorem for λ²-statistically summability and the rate of λ²-statistically summability of a sequence of positive linear operators defined from C₂ₙ (R) into C₂ₙ (R).
Mathematics Subject Classification (2010): 40G15, 41A36, 46A45.
References
Acar, T., Mohiuddine, S.A., Statistical (C, 1)(E, 1) summability and Korovkin’s theorem, Filomat, 30(2016), no. 2, 387-393.
Acar, T., Dirik, F., Korovkin type theorems in weighted Lp spaces via summation process, Sci. World Jour., 2013, Article ID 53454.
Altomare, F., Korovkin-type theorems and approximation by positive linear operators, Survey in Approximation Theory, 5(2010), 92-164.
Bhardwaj, V.K., Dhawan, S., Korovkin type approximation theorems via f -statistical convergence, J. Math. Anal., 9(2018), no. 2, 99-117.
Braha, N.L., A new class of sequences related to the lp spaces defined by sequences of Orlicz functions, J. Inequal. Appl. 2011, Art. ID 539745, 10 pp.
Braha, N.L., Et, M., The sequence space Eq (M, p, s) and N −lacunary statistical convergence, Banach J. Math. Anal., 7(2013), no. 1, 88-96.
Braha, N.L., Loku, V., Srivastava, H.M., Λ2−weighted statistical convergence and Korovkin and Voronovskaya type theorems, Appl. Math. Comput., 266(2015), 675-686.
Braha, N.L., Mansour, T., On Λ2-strong convergence of numerical sequences and Fourier series, Acta Math. Hungar., 141(2013), no. 1-2, 113-126.
Braha, N.L., Srivastava, H.M., Mohiuddine, S.A., A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vall´ee- Poussin mean, Appl. Math. Comput., 228(2014), 162-169.
Connor, J.S., The statistical and strong p-Cesaro convergence of sequences, Analysis, 8(1988), 47-63.
Edely, O.H.H., Mohiuddine, S.A., Noman, A.K., Korovkin type approximation theorems obtained through generalized statistical convergence, Applied Math. Letters, 23(2010), 1382-1387.
Fast, H., Sur la convergence statistique, Colloq. Math., 2(1951), 241-244. [13] Fridy, J.A., On statistical convergence, Analysis, 5(1985), 301-313.
Fridy, J.A., Orhan, C., Lacunary statistical convergences, Pacific J. Math., 160(1993), no. 1, 43-51.
Kadak, U., Braha, N.L., Srivastava, H.M., Statistical weighted B-summability and its applications to approximation theorems, Appl. Math. Comput., 302(2017), 80-96.
Korovkin, P.P., Convergence of linear positive operators in the spaces of continuous functions, (Russian), Doklady Akad. Nauk. SSSR (N.S.), 90(1953), 961-964.
Korovkin, P.P., Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.
Loku, V., Braha, N.L., Some weighted statistical convergence and Korovkin type-theorem, J. Inequal. Spec. Funct., 8(2017), no. 3, 139-150.
Mohiuddine, S.A., Alotaibi, A., Mursaleen, M., Statistical summability (C, 1) and a Korovkin type approximation theorem, J. Inequa. Appl., 2012, 2012:172.
Mursaleen, M., λ−statistical convergences, Math. Slovaca, 50(2000), no. 1, 111-115. [21] Mursaleen, M., Alotaibi, A., Statistical lacunary summability and a Korovkin type approximation theorem, Ann. Univ. Ferrara, 57(2011), no. 2, 373-381.
Mursaleen, M., Karakaya, V., Erturk, M., Gursoy, F., Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput., 218(2012), 9132-9137.
Sevda, O., Tuncer, A., Fadime, D., Korovkin type theorems in weighted Lp-spaces via statistical A-summability, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 62(2016), no. 2, 2, 537-546.
Srivastava, H.M., Mursaleen, M., Khan, A., Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Modelling, 55(2012), 2040-2051.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.