General inequalities related Hermite-Hadamard inequality for generalized fractional integrals

Authors

  • Havva KAVURMACI-ÖNALAN Department of Mathematics, Education Faculty, Yüzüncü Yıl University, Van, Turkey, e-mail: havvaonalan@yyu.edu.tr
  • Erhan SET Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey, e-mail: erhanset@yahoo.com
  • Abdurrahman GÖZPINAR Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey, e-mail: abdurrahmangozpinar79@gmail.com

DOI:

https://doi.org/10.24193/subbmath.2019.4.01

Keywords:

Hermite-Hadamard inequality, Riemann-Liouville fractional integral, fractional integral operator.

Abstract

In this article, we first establish a new general integral identity for differentiable functions with the help of generalized fractional integral operators introduced by Raina [8] and Agarwal et al. [1]. As a second, by using this identity we obtain some new fractional Hermite-Hadamard type inequalities for functions whose absolute values of first derivatives are convex. Relevant connections of the results presented here with those involving Riemann-Liouville fractional integrals are also pointed out.

Mathematics Subject Classification (2010): 26A33, 26D10, 26D15, 33B20.

References

Agarwal, R.P., Luo, M.-J., Raina, R.K., On Ostrowski type inequalities, Fasc. Math., 56(2016), no. 1, 5-27.

Awan, M.U., Noor, M.A., Du, T-S., Noor, K.I., New refinements of fractional Hermite- Hadamard inequality, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 113(2019), no. 21.

Dragomir, S.S., Pearce, C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.

Gorenflo, R., Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order, Fractals and fractional calculus in continuum mechanics, Udine, 1996, 223–276, CISM Courses and Lectures, 378, Springer, Vienna, 1997.

Iqbal, M., Bhatti, M.I., Nazeer, K., Generalization of ineqaulities analogous to Hermite- Hadamard inequality via fractional integrals, Bull. Korean Math. Soc., 52(2015), no. 3, 707-716.

Kirmaci, U.S., Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147(2004), no. 1, 137– 146.

Noor, M.A., Noor, K.I., Awan, M.U., Khan, S., Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions, Appl. Math. Inf. Sci., 8(2014), no. 6, 2865–2872.

Raina, R.K., On generalized Wright’s hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2005), no. 2, 191-203.

Set, E., Akdemir, A.O., C¸ elik, B., On generalization of Fej´er type inequalities via fractional integral operator, Filomat, 32(2018), no. 16, 5537-5547.

Set, E., Choi, J., C¸ elik, B., Certain Hermite-Hadamard type inequalities involving generalized fractional integral operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 112(2018), 1539-1547.

Set, E., C¸ elik, B., Fractional Hermite-Hadamard type inequalities for quasi-convex functions, Ordu Univ. J. Sci. Tech., 6(2016), no. 1, 137-149.

Set, E., C¸ elik, B., On generalizations related to the left side of Fejer’s inequality via fractional integral operator, Miskolc Math. Notes, 18(2017), no. 2, 1043-1057.

Set, E., C¸ elik, B., Generalized fractional Hermite-Hadamard type inequalities for m- convex and (α, m)- convex functions, Commun. Fac. Sci. Univ. Ank. Ser. A1., 67(2018), no. 1, 351-362.

Set, E., G¨ozpınar, A., Some new inequalities involving generalized fractional integral operators for several class of functions, AIP Conf. Proc., 1833(2017), no. 1, p:020038.

Set, E., G¨ozpınar, A., Hermite-Hadamard type inequalities for convex functions via generalized fractional integral operators, Topol. Algebra Appl., 5(2017), no. 1, 55-62.

Set, E. I˙¸scan, I., Zehir, F., On some new inequalities of Hermite-Hadamard type involving harmonically convex functions via fractional integrals, Konuralp J. Math., 3(2015), no. 1, 42-55.

Set, E., Noor, M.A., Awan, M.U., G¨ozpınar, A., Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 169(2017), 1-10.

Set, E., Sarıkaya, M.Z., O¨ zdemir, M.E., Yıldırım, H., The Hermite-Hadamard’s inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Statis. Inform., 10(2014), no. 2, 69-83.

Usta, F., Budak, H., Sarıkaya, M.Z., Set, E., On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators, Filomat, 32(2018), no. 6, 2153-2172.

Yaldız, H., Sarıkaya, M.Z., On the Hermite-Hadamard type inequalities for fractional integral operator, Submitted.

Downloads

Published

2019-12-30

How to Cite

KAVURMACI-ÖNALAN, H., SET, E., & GÖZPINAR, A. (2019). General inequalities related Hermite-Hadamard inequality for generalized fractional integrals. Studia Universitatis Babeș-Bolyai Mathematica, 64(4), 453–465. https://doi.org/10.24193/subbmath.2019.4.01

Issue

Section

Articles

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.