Ball comparison for three optimal eight order methods under weak conditions
DOI:
https://doi.org/10.24193/subbmath.2019.3.12Keywords:
Banach space, Fr´echet derivative, efficiency index, ball convergence.Abstract
We considered three optimal eighth order method for solving nonlinear equations. In earlier studies Taylors expansions and hypotheses reaching up to the eighth derivative are used to prove the convergence of these methods. These hypotheses restrict the applicability of the methods. In our study we use hypotheses on the first derivative. Numerical examples illustrating the theoretical results are also presented in this study.
Mathematics Subject Classification (2010): 65D10, 65D99, 47J25, 47J05.
References
Argyros, I.K., Quadratic equations and applications to Chandrasekhar’s and related equations, Bull. Aust. Math. Soc., 32(1985), 275-292.
Argyros, I.K., A unifying local-semilocal convergence analysis and applications for twopoint Newton-like methods in Banach space, J. Math. Anal. Appl., 298(2004), 374-397.
Argyros, I.K., Computational theory of iterative methods, Series: Studies in Computa- tional Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co. New York, U.S.A, 2007.
Argyros, I.K., Chen, D., Results on the Chebyshev method in Banach spaces, Proyecciones, 12(2)(1993), 119-128.
Argyros, I.K., George, S., Alberto Magrenan, A., Local convergence for multi-point- parametric Chebyshev-Halley-type methods of high convergence order, J. Comput. Appl. Math., 282(2015), 215-224.
Argyros, I.K., Hilout, S., Weaker conditions for the convergence of Newton’s method, J. Complexity, 28(2012), 364-387.
Argyros, I.K., Hilout, S., Numerical Methods in Nonlinear Analysis, World Scientific Publ. Comp. New Jersey, 2013.
C˘atina¸s, E., A survey on the convergence radius and computational orders of sequences, Appl. Math. Comput., 343(2019), 1-20.
Chun, C., Stanica, P., Neta, B., Third order family of methods in Banach spaces, Com- put. Math. Appl., 61(2011), 1665-1675.
Guti´errez, J.M., Herna´ndez, M.A., Recurrence relations for the super-Halley method, Comput. Math. Appl., 36(1998), 1-8.
Herna´ndez, M.A., Salanova, M.A., Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, J. Comput. Appl. Math., 126(2000), 131-143.
Herna´ndez, M.A., Chebyshev’s approximation algorithms and applications, Comput. Math. Appl., 41(2001),433-455.
Herna´ndez, M.A., Second derivative free variant of the Chebyshev method for nonlinear equations, J. Optim. Theory. Appl., 104(2000), no. 3, 501-515.
Hueso, J.L., Martinez, E., Tervel, C., Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems, J. Comput. Appl. Math., 275(2015), 412–420.
Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982. [16] Magren˜a´n, A´ .A. , Estudio de la dina´mica del m´etodo de Newton amortiguado (PhD Thesis), Servicio de Publicaciones, Universidad de La Rioja, 2013.
Petkovic, M.S., Neta, B., Petkovic, L., Dˇzuniˇc, J., Multipoint Methods for Solving Nonlinear Equations, Elsevier, 2013.
Rheinboldt, W.C., An adaptive continuation process for solving systems of nonlinear equations, In: Mathematical Models and Numerical Methods (A.N. Tikhonov et al. eds.), pub. 3, (19), 129-142 Banach Center, Warsaw Poland.
Siyyam, H.I., Taib, M., Alsubaihi, I.A., A new one parameter family of iterative methods with eight-order of convergence for solving nonlinear equations, Int. J. Pure and Appl. Math., 84(2013), no. 4, 451-461.
Sharma, J.R., Some fifth and sixth order iterative methods for solving nonlinear equations, Ranji Sharma Int. Journal of Engineering Research and Applications, 4(2014), no. 2, 268-273.
Traub, J.F., Iterative methods for the solution of equations, Prentice Hall Series in Automatic Computation, Englewood Cliffs, N.J., 1964.
Wang, X., Kou, J., Semilocal convergence and R-order for modified Chebyshev-Halley methods, Numer. Algorithms, 64(2013), no. 1, 105-126.
Wang, X., Liu, L., New eight-order iterative methods for solving nonlinear equations, J. Comput. Appl. Math., 234(2010), 1611-1620.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.