On two modified Phillips operators

Dedicated to Professor Heiner Gonska on the occasion of his 70th anniversary.

Authors

  • Gancho TACHEV University of Architecture, Civil Engineering and Geodesy Department of Mathematics Hristo Smirnensky, Blvd., 1, 1046 Sofia, Bulgaria, e-mail: gtt_fte@uacg.bg

Keywords:

Phillips operators, exponential functions, quantitative results.

Abstract

In this note we introduce two new modified Phillips operators G1 and n. We obtain direct estimates for approximation of bounded continuous functions, defined on [0, ) by G1 , as well as for approximation of unbounded continuous functions by G2 We improve some previous results on this topic.

Mathematics Subject Classification (2010): 41A25, 41A36.

References

Acar, T., Aral, A., Gonska, H., On Sz´asz-Mirakyan operators preserving e2ax, a > 0, Mediterr. J. Math., 14(6)(2017).

Acar, T., Aral, A., C´ardenas- Morales, D., Garrancho, P., Sz´asz-Mirakyan type operators which fix exponentials, Results Math., 72(2017), no. 3, 1341-1358.

Aral, A., Inoan, D., Ra¸sa, I., On the generalized Sz´asz-Mirakyan operators, Results Math., 65(2014), 441-452.

Aral, A., Inoan, D., Ra¸sa, I., Approximation properties of Sz´asz-Mirakyan operators preserving exponential functions, Positivity (2018) (to appear).

Bodur, M., Yilmaz, O.G., Aral, A., Approximation by Baskakov-Sza´sz-Stancu operators preserving exponential functions, Constr. Math. Anal., 1(2018), no. 1, 1-8.

Boyanov, B.D., Veselinov, V.M., A note on the approximation of functions in an infinite interval by linear positive operators, Bull. Math. Soc. Sci. Math. Roum., 14(62)(1970), 9-13.

Duman, O., Ozarslan, M.A., Sz´asz-Mirakyan type operators providing a better error estimation, Appl. Math. Lett., 20(2007), 1184-1188.

Finta, Z., Gupta, V., Direct and inverse estimates for Phillips type operators, J. Math. Anal. Appl., 303(2005), no. 2, 627-642.

Gadziev, A.D., Theorems of the type of P.P. Korovkin’s Theorems, Mat. Zametki, 20(1976), no. 5, 781-786.

Gonska, H., Quantitative Korovkin-type theorems on simultaneous approximation, Math. Z., 186(1984), 419-433.

Gupta, V., A note on modified Phillips operators, Southeast Asian Bulletin of Mathematics, 34(2010), 847-851.

Gupta, V., Tachev, G., On approximation properties of Phillips operators preserving exponential functions, Mediterr. J. Math., 14(2017), no. 4, art. 177.

Gupta, V., Lopez-Moreno, A.J., Phillips operators preserving arbitrary exponential functions eat, ebt, Filomat (2018) (to appear).

Heilmann, M., Tachev, G., Commutativity, direct and strong converse results for Phillips operators, East J. Approx., 17(2011), no. 3, 299–317.

Heilmann, M., Tachev, G., Linear Combinations of Genuine Sz´asz-Mirakjan-Durrmeyer Operators, In: Anastassiou G., Duman O. (eds), Advances in Applied Mathematics and Approximation Theory, Springer Proceedings in Mathematics & Statistics, Springer, New York, NY, 41(2013), 85-106.

Holho¸s, A., The rate of approximation of functions in an infinite interval by positive linear operators, Stud. Univ. Babe¸s-Bolyai Math., 55(2010), no. 2, 133-142.

King, J.P., Positive linear operators which preserve x2, Acta Math. Hungar, 99(2003), no. 3, 203-208.

Paltanea, R., Optimal estimates with moduli of continuity, Results Math., 32(1997), 318-331.

Paltanea, R., Simic, M., General estimates of the weighted approximation on interval [0, ∞) using moduli of continuity, Bull. Transilv. Univ. Bra¸sov Ser. III, 8(57)(2015), no. 2, 93-108.

Phillips, R.S., An inversion formula for Laplace transforms and semi-groups of linear operators, Annals Math., 59(1954), 325-356.

Tachev, G., A global inverse theorem for combinations of Phillips operators, Mediterr. J. Math., 13(2016), no. 5, 2709-2719.

Tachev, G., Pointwise estimate for linear combinations of Phillips operators, J. Classical Analysis, 8(2016), no. 1, 41-51.

Tachev, G., Gupta, V., Aral, A., Voronovskaja’s theorem for functions with exponential growth, Georgian Math. J. (to appear).

Tachev, G., Approximation of bounded continuous functions by linear combinations of Phillips operators, Demonstr. Math., 47(2014), no. 3, 662-671.

Downloads

Published

2019-09-30

How to Cite

TACHEV, G. (2019). On two modified Phillips operators: Dedicated to Professor Heiner Gonska on the occasion of his 70th anniversary. Studia Universitatis Babeș-Bolyai Mathematica, 64(3), 305–312. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/2295

Issue

Section

Articles

Similar Articles

<< < 23 24 25 26 27 28 29 30 31 32 > >> 

You may also start an advanced similarity search for this article.