Approximation theorems for multivariate Taylor-Abel-Poisson means

Dedicated to Professor Heiner Gonska on the occasion of his 70th anniversary.

Authors

DOI:

https://doi.org/10.24193/subbmath.2019.3.03

Keywords:

Direct approximation theorem, inverse approximation theorem, Taylor-Abel-Poisson means, K-functional, multiplier.

Abstract

We obtain direct and inverse approximation theorems of functions of several variables by Taylor-Abel-Poisson means in the integral metrics. We also show that norms of multipliers in the spaces Lp,Y (Td) are equivalent for all positive integers d.

Mathematics Subject Classification (2010): 41A27, 42A45, 41A35.

References

Bari, N.K., Stechkin, S.B., Best approximations and differential properties of two conjugate functions, (Russian), Tr. Mosk. Mat. Obshch., 5(1956), 483-522.

Butzer, P.L., Beziehungen zwischen den Riemannschen, Taylorschen und gew¨ohnlichen Ableitungen reellwertiger Funktionen, Math. Ann., 144(1961), 275-298.

Butzer, P.L., Nessel, R., Fourier Analysis and Approximation, One-Dimensional Theory, Basel, New York, 1971.

Butzer, P.L., Sunouchi, G., Approximation theorems for the solution of Fourier’s problem and Dirichlet’s problem, Math. Ann., 155(1964), 316-330.

Butzer, P.L., Tillmann, H.G., Approximation theorems for semi-groups of bounded linear transformations, Math. Ann., 140(1960), 256-262.

Chandra, P., Mohapatra, R.N., Approximation of functions by (J, qn) means of Fourier series, Approx. Theory Appl., 4(1988), no. 2, 49-54.

Chui, C.K., Holland, A.S.B., On the order of approximation by Euler and Taylor means, J. Approx. Theory, 39(1983), no. 1, 24-38.

DeVore, R.A., Lorentz, G.G. Constructive Approximation, Berlin, Springer Verlag, 1993. [9] Edwards, R.E., Fourier Series: a Modern Introduction, Vol. 2, New York, NY, Springer New York, 1982.

Holland, A.S.B., Sahney, B.N., Mohapatra, R.N., Lp approximation of functions by Euler means, Rend. Mat. Appl., VII(3)(1983), no. 2, 341-355.

Leis, R., Approximationssa¨tze fu¨r stetige Operatoren, Arch. Math., 14(1963), 120-129. [12] Mohapatra, R.N., Holland, A.S.B., Sahney, B.N., Functions of class Lip(α, p) and their Taylor mean, J. Approx. Theory, 45(1985), no. 4, 363-374.

Prestin, J., Savchuk, V.V., Shidlich, A.L., Direct and inverse approximation theorems of 2π-periodic functions by Taylor-Abel-Poisson means, Ukr. Mat. Journ., 69(2017), no. 5, 766-781.

Rudin, W., Function Theory in Polydiscs, W.A. Benjamin Inc., New York, Amsterdam, 1969.

Savchuk, V.V., Approximation of holomorphic functions by Taylor-Abel-Poisson means, Ukr. Mat. Journ., 59(2007), no. 9, 1397-1407.

Savchuk, V.V., Savchuk, M.V., Norms of multipliers and best approximations of holomorphic multivariable functions, Ukr. Mat. Journ., 54(2002), no. 12, 2025-2037.

Savchuk, V.V., Shidlich, A.L., Approximation of functions of several variables by linear methods in the space Sp, Acta Sci. Math. (Szeged), 80(2014), no. 3-4, 477-489.

Trigub, R.M., Belinsky, E.S., Fourier analysis and approximation of functions, Dordrecht, Kluwer Academic Publishers, 2004.

Zastavnyi, V.P., Savchuk, V.V., Approximation of classes of convolutions by linear operators of a special form, Math. Notes, 90(2011), no. 3, 333-343.

Downloads

Published

2019-09-30

How to Cite

PRESTIN, J., SAVCHUK, V., & SHIDLICH, A. (2019). Approximation theorems for multivariate Taylor-Abel-Poisson means: Dedicated to Professor Heiner Gonska on the occasion of his 70th anniversary. Studia Universitatis Babeș-Bolyai Mathematica, 64(3), 313–329. https://doi.org/10.24193/subbmath.2019.3.03

Issue

Section

Articles

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.